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Executive Summary

Reliable transmission of information is an important issue in military and com-
mercial communication systems. Even though modern techniques provide some
error performance improvement, systems experiencing large interference can un-
dergo unacceptable degradation. The principal investigator and his research
team, under previous contracts with the United States Air Force through Rome
Laboratory, developed a system that significantly improves performance in sev-
erely degraded channels. This report represents the culmination of a study
focusing on more extensive characterizations of a robust autoregressive locally
optimum (ARLO) detector operating in a variety of noise environments.

In a communication system, undesired signals (such as channel noise, jam-
mers, or cross-channel interference) are a primary cause of signal corruption
and performance degradation. If the channel were corrupted with only additive
white Gaussian noise, the chosen detector would be a linear correlator, as it is
an optimum detector for this scenario. However, a linear correlator is usually
sub-optimum for other types of noise, such as would be encountered in an inten-
tionally or unintentionally hostile environment or in a multi-user application. In
this scenario, traditional techniques usually precede the linear correlator with
a fixed nonlinearity [1], whose purpose is to negate the effects of the additional
noise, and thus improve the performance of the linear correlator. The ARLO
algorithm, in contrast, uses an adaptive nonlinearity that utilizes probability
density function (pdf) estimation techniques to alleviate the need for a priori
knowledge of the channel noise characteristics. The mathematical basis for the
algorithm is as follows.

Consider a system that has a received signal vector, r, given by the following
expression,

r=s, +n, (1)

where s, is the transmitted signal, m = Oor1, and n is the total noise signal
(interference plus background noise).

Letting the observed value of r be p, the LO nonlinearity used in the ARLO
detector is,

2 fn (p)
. — _Bp B
i (p) ) (2)

where fy, () is the joint pdf of the noise.



Therefore, the LO detector likelihood function, I (p), for the detection of
known binary signals can be written as,

choose H;

L) =N [sui—s0)ai (@] < v (3)
choose Hy

where v is an appropriately chosen decision threshold.



Chapter 1

Introduction

In modern military and commercial communication systems, it is imperative
that information be transferred in a reliable and secure manner. Current tech-
niques, such as those used in spread spectrum (SS) systems, provide a measure
of security and reliability. Systems that undergo extreme interference, however,
can exhibit unacceptable performance. It is, therefore, imperative to investi-
gate techniques to combat the degradation experienced by such systems. Since
the decrease in acceptability is caused by interference, it is logical to develop
methods to mitigate these undesirable signals.

Locally optimum (LO) detection is a technique that lends itself to such sit-
uations. Its performance is close to that of the optimum Bayesian or globally
optimum (GO) detector with a much reduced complexity. It is also robust in
that it can be implemented to adapt to changing environments. Previous work
[1] has focused on such LO detectors that utilize estimates of the probability
density function (pdf) alleviating the need for any a priori knowledge of the
noise characteristics. Multidimensional signal processing can improve perfor-
mance in these systems. However, the complexity increases enormously as the
dimensionality of the joint pdf (jpdf) of the signaling environment, grows. More
recently, techniques have centered on the use of autoregressive (AR) modeling
methods to better estimate the noise environment and enhance performance.
The Autoregressive Locally Optimum (ARLO) detector is one that successfully
combines these techniques. The use of AR process models greatly reduces the
dimensionality, and hence the complexity, of the resulting ARLO detector. The
statistics of the jpdf remain an issue. To this end, pdf estimation techniques
for independent identically distributed (iid) noise samples prove useful since the
input sequence to the AR model is iid albeit characterized by some unknown
pdf. The necessary AR model parameters are determined by well-known spec-
tral estimation techniques. Thus, the goal of this research effort is to further
characterize performance improvements in robust LO detectors using AR tech-
niques.

In pursuit of this goal, simulations were initially performed using MATLAB®
and later re-coded into C. The simulation uses B total received symbols sampled



at a rate of Ny, samples/symbol. Standard AR model estimation techniques are
applied to all of the received data. The bit error performance (BER) of five
detectors are computed and compared. The detectors studied are the linear
correlator, the LO detector without memory, the linear correlator and the LO
detector operating on whitened noise, and the ARLO detector. A block diagram
illustrating this system is shown in Figure 1.1.

Nonlinearity

I ]
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Figure 1.1: (a) ARLO system block diagram. (b) Expanded view of FEstimate
h’ block.

The interference environment was generated using an AR process by passing
iid noise through a given AR model (i.e., the {a;} are known). The communi-
cation system employed binary phase shift keyed (BPSK) signals so that each
symbol represented a bit. The AR process model used a 16" order filter. The
spread spectrum system used a processing gain of 16 chips/bit and the number
of samples/chip, N, was set to 4. The noise pdf was estimated using the his-
togram method. A Monte Carlo simulation was performed using a number of
iterations.

The organization of this report is as follows. First, pdf estimation tech-
niques are evaluated for performance enhancement in Chapter 2. Next, the
performance of the ARLO detector is compared with other standard detectors
in multiple interference environments in Chapter 3. Additionally, this chapter
reviews the effect of detector variables on performance. Chapter 4 focuses on
the conversion of the simulation into a high level language. In addition, this
chapter analyzes the execution speed of the simulation and reviews the effect of
detector parameters on said speed. Finally, a summary of the research study
is provided in Chapter 5, including a discussion concerning future research and



development of the ARLO detector.



Chapter 2

Probability Density Function
Estimation

The current form of the simulation uses the histogram method for estimating
the pdf of the whitened received signal. The derivative of the resulting pdf is
then used to generate the decision function, g (p), for choosing between the two
BPSK symbols. Simulation results have revealed that a large portion of the
processing time is devoted to the calculation of g (p). Therefore, the goal was to
determine if a faster, more efficient alternative to the histogram method could
be found for estimating the pdf of the received signal.

Efforts became focused on estimating the unknown pdf of a correlated data
sequence via POCS methods. However, after initial research, it was determined
that the POCS method may not offer the coding simplicity and speed required
due to its potential complexity. Research was then concentrated on using arti-
ficial neural networks (ANN) for pdf estimation [5]. This work proposes that a
mixture of radial basis functions (RBF) can approximate an unknown pdf. An
RBF ANN can be trained in such a way that it outputs the approximated pdf,
even when the input data is correlated. However, in this form, the ANN method
was more complicated than necessary due to the fact the actual simulation data
is uncorrelated because the received signal is whitened prior to the determina-
tion of its pdf. This fact simplifies the problem at hand, thus making it possible
to use a similar but less complicated theory called Parzen’s Estimator [4].

2.1 Histogram Method

The histogram method attempts to estimate the pdf of a signal through the
use of a histogram to approximate its continuous pdf. Each signal sample is
deposited into the appropriate bin, based on its value. This process creates a
histogram which describes the pdf of the signal. The greater the number of bins,
the better the histogram represents the continuous pdf of the actual received
signal. This method is very simple to implement, and quite accurate relative to



its level of complexity.

2.2 Parzen’s Estimator

Parzen’s estimator attempts to estimate a pdf through the use of radial basis
functions (RBF). RBFs are parametric functions which satisfy the axiomatic
properties of pdfs. They assume a maximum value at zero radius and mono-
tonically decay from this maximum as the radius increases [5]. For instance,
the Gaussian density function is considered to be an RBF. Parzen’s estimator
proposes that the estimated pdf of a set of correlated data is the weighted sum
of individual RBFs centered at each data point. This can be written as,

s A 1 " T —T;
= e =——— ) k|{—+ 2.1
fX le,...,Xn (IL'|IL'1, 3mn) nh (TL) zzzl ( h(n) ) ] ( )
where n is the number of data points, & (-) is the RBF, and h (n) is a smoothing
factor [4]. Currently, the Gaussian function is being used as the RBF, & (-),

k@) = e, (2.2)
and h (n) is the inverse p** root of the sample size [4],

h(n)=n7. (2.3)

The above definition of the smoothing factor results in the fact that as the
value of p increases, the bias of the estimator increases, while the variance of
the estimator decreases. If p takes on a value of 2, the resulting estimator is
unbiased. As stated above, the derivative of the estimated pdf must be taken in
order to determine the g (p) function, so achieving a smooth pdf is important.
However, the resulting unbiased estimator, when p = 2, is not smooth. Smooth-
ness is achieved when the value of p is greater than 3, but these estimators
are biased. Comparatively, in the histogram method, the number of bins used
affects the smoothness of the resulting pdf. Currently, the simulation employs
a histogram with thirty-three bins. This results in a jagged pdf. Smoother
results are achieved when the number of bins approaches twelve. The various
values of p yield approximately the same estimate of the pdf. When p = 3.4,
the lowest MSE is achieved. However it is only slightly smaller than the other
MSE values. All of the histogram estimates are somewhat jagged at transition
points, thereby resulting in large MSEs.

The Parzen estimator can prove to be a reliable estimator of the pdf of the
whitened received signal data. The method results in smooth, estimated pdfs
with low MSEs. In order to make a definitive decision on whether the Parzen
estimator is more effective than the histogram method, further research needs
to be conducted. The issues which need to be addressed are the following:
the exact estimation time of each method, the capabilities of each method to
reliably estimate pdfs using fewer data points, and the capacity of each method
to estimate other types of non-Gaussian pdfs.



Chapter 3

Performance Analysis

The ultimate measure of the total system performance of a communication sys-
tem is the BER, the ratio of erroneous bits received to the total number of bits
transmitted. In order to be able to measure the BER, a SS communication
system was previously implemented using MATLAB® as a simulation tool [3].
The simulation will allow us to study the BER performance of the system in
varying interference environments as well as under different configurations of
system parameters. The first section of this chapter will describe the various
interference environments implemented in the simulation. The second section
will analyze the detector performance against each interferer. The ARLO detec-
tor has a number of parameters whose values can affect the performance of the
communication system. Therefore, the third section of this chapter will discuss
in detail the effects of choosing alternate parameter values.

3.1 Interference Environments

Four different interferers were implemented for use in the simulation, continu-
ous wave (CW), partial band (PB), dual continuous wave (2CW), and mized
interferers.

3.1.1 Continuous Wave

The CW interferer is simply a sine wave of a predetermined frequency, with
zero phase shift, as shown in Figure 3.1. The amplitude of the sine wave is
determined by the interference to signal ratio (ISR) as,

2 (10’f—oR)
~

where I is the number of CW interferers (one, in the single CW case).

Amplitude = , (3.1)
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Figure 3.1: CW Interferer, 100 data samples.

The frequency of the sine wave is determined as,
f =N:B, (3.2)

where N, is the number of samples per chip and B is the number of symbols
transmitted over the channel. The power spectra of a CW interferer with ISR =
30 dBW is shown in Figure 3.2.

3.1.2 Partial Band

The PB interferer exhibits a large degree of power over a chosen band of frequen-
cies. This jammer is created by passing an independent, identically distributed
(ITD) white noise process through a predetermined AR filter, which is created
by taking the polynomial,

poly =[1 —0.75], (3.3)
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Figure 3.2: CW power spectra.

and convolving it with itself four times. This “auto-convolution” process creates
a 16*"-order filter with filter coefficients,

~1
12
—67.5
236.25
—575.859
1036.55
—1425.25
1527.06
a; = —1288.45 | . (3.4)
858.969
—450.959
184.483
—57.651
13.3041
—2.13815
0.213815
| —0.0100226 |

The power spectra of the filter described by (3.4), with ISR = 30 dBW, is shown
in Figure 3.3.
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Power Spectra for PB Interference Environment
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Figure 3.3: PB power spectra.

3.1.3 Dual Continuous Wave

The 2CW interferer is easily created by summing two single CW interferers.
The amplitude of each sine wave is determined as shown in (3.1), with I = 2.
The frequency of each sine wave is calculated by,

N.B
f= [ 0.3N B ] ! (3:5)

with the variables the same as in (3.2). Figure 3.4 shows the 2CW interferer,
with ISR = 30dBW, along with its two component sine waves. The power
spectra for the 2CW interferer is shown in Figure 3.5.

3.1.4 Mixed

The mixed interferer is created by summing a CW interferer with a PB interferer.
The ISR of the combination is fixed; the sum of the ISR’s of the components

equals the value chosen. The power spectra of such a jammer is shown in Figure
3.6.
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Power Spectra for MX Interference Environment
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Figure 3.6: MX power spectra.

3.2 Detector Performance

The SS communication system simulation has a number of parameters that de-
fine the system operation. In order to properly analyze the performance of the
ARLO detector, and compare it to the BER performance of other detectors,
default values for each parameter must be chosen. Assessing the effect on per-
formance of changing these parameters is the focus of the third section of this
chapter. Default values were chosen based on various factors such as execution
time and typical values encountered in practice. Table 3.1 shows the default
variables chosen for simulation purposes. All simulations can be assumed to
have been executed with these parameter values, unless otherwise noted.

Four other detectors are implemented in the simulation for comparison with
the ARLO detector. The simplest is the linear correlator (LC), which is the
optimum detector in an additive white Gaussian noise environment, such as the
thermal background noise used in the simulation. The next detector is the LC
on Whitened Noise (LCW). This detector performs as a linear correlator, but it
operates on the received signal data stream after it has been whitened to reduce
the noise component. The third detector is the LO detector, which is the basis
for the ARLO detector. The final detector is the LO on Whitened Noise (LOW).
This detector performs as a LO detector, but it operates on the received signal
data stream after it has been whitened to reduce the noise component. The
following sections will analyze the performance of the ARLO detector within
each interference environment, including a scenario with no interferer present,
using the default system parameters as shown in Table 3.1.

13



| Type | Parameter | Parameter Description Value
pdf Bh Total symbols to calculate histogram 128
Estimation K Data points to calculate 33
T Range of support for pdf 1000
Nc Samples per chip 4
Spread- PG Processing Gain (chips per bit) 16
Spectrum Nb Samples per symbol (PG x Nc)
B Symbols transmitted /received 16,384
Ntot Total samples in data stream (B x Nb)
Bar Total symbols to estimate AR parameters % =2
AR-model Bg Total symbols to calculate g (.) Bh
P Number of AR coefficients 16
Parameters sigmat2 Variance of thermal noise 1
limit Limiter on noise hard
Interferer ISR Interferer-to-signal ratio 30 dB

Table 3.1: Default parameters for communication system simulations. All simu-
lations can be assumed to have been executed with these parameter values, unless
otherwise noted.

3.2.1 Partial Band Interferer

The PB jammer provides for an extremely hostile environment for a communi-
cation system channel, as shown in the power spectra plot in Figure 3.8. The
interferer overpowers the signal by nearly 40 dBW at peak jammer power, and
further overloads the signal over a significant portion of the signal’s main lobe.
As can be seen from Figure 3.7, the ARLO detector greatly outperforms the
other detectors, even the LO detector upon which it is based. At a signal-to-
thermal-noise ratio (SNR) of 0 dB, the ARLO detector is able to perform at a
BER of less than 1072, or less than 1 bit error for every 100 transmitted, despite
the powerful PB jammer. The next best detector returns a BER of greater than
1071, or approximately 19 bit errors for every 100 transmitted. In this scenario,
ARLO is clearly the best detector of all those tested.

3.2.2 Continuous Wave Interferer

In the CW interference environment, it can be seen from Figure 3.9 that the
ARLO detector performs adequately, albeit slightly worse, than the other de-
tectors in the less-hostile CW environment, with the exception of the LC. At
0 dB, the ARLO detector is registering a BER of 10~3, or 0.04 bit errors for
every 100 transmitted. The other detectors’ performance falls in the range of
10~%% to 0 BER. While ARLO is outperformed in this scenario, it still provides
excellent detection capabilities.
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Detector Performance in PB Interference Environment
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Figure 3.7: BER in PB interference environment.

3.2.3 Dual Continuous Wave Interferer

The 2CW jammer provides a greater hindrance to communication over a channel
than does the CW jammer, as can be seen from the greater frequency coverage of
the interferer in Figure 3.12, compared with that of the CW interferer in Figure
3.10. Therefore, one would expect that BER performance would decrease as
compared to the single CW. For all five detectors, this is the case, with the four
non-ARLO detectors registering a 0 dB BER in the 107! to 10~ range, meaning
10 — 32 bit errors for every 100 bits transmitted. The ARLO detector’s 0 dB
performance registered at slightly better than 10~2 BER, or less than 1 error
out of every 100 bits. ARLO was clearly the best performer in this scenario.

3.2.4 Mixed Interferer

The MX interference scenario is potentially the most hostile environment in the
simulation. While the ISR remains constant in each environment, the frequency
band coverage of the MX interferer is greater than that of the other 3 jam-
mers. ARLO again clearly outperforms the other detectors, registering a BER
of 10726, or 0.25 bit errors for every 100 bits transmitted, at the 0 dB SNR
point. The nearest other detector experiences 10 errors for every 100 bits.

15



Power Spectra for PB Interference Environment
60~

— Signal
— - Thermal Noise
Interferer
208 % . X Received ) :
x - Whitened Received
X
X
X
20 o

Power Magnitude (dB)

-60

-80 | I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (with respect to sampling frequency)

Figure 3.8: Power spectra for PB interference environment.

3.2.5 No Channel Interference

The purpose of running a simulation with no interferer present is to document
the effectiveness of the ARLO detector in a very stable environment. This
represents using the ARLO detector in a benign scenario. Theory predicts that
the linear correlator will perform best, as it is the optimum detector in additive
white Gaussian noise. The BER curve in Figure 3.15 agrees with theory, with the
LC detector performing the best. ARLO performs only slightly less effectively,
achieving a zero BER at all SNR greater than (—1) dB. These results indicate
that the ARLO detector can be effectively used even when jamming is not
present.

3.2.6 Performance Summary

Figure 3.16, a summary of section 3.2, shows that the ARLO detector clearly
outperforms the other three detectors in three of the four interference environ-
ments tested. In the fourth environment, consisting of the CW interferer, the
best detector achieves zero bit errors, while ARLO performs admirably with
only 0.04 bit errors for every 100 bits transmitted. Additionally, the ARLO
detector never exceeds 1 bit error for every 100 transmitted bits, while the best
of the other detectors makes 10 bit errors 75% of the time. These results clearly
indicate the performance enhancement that the ARLO detector can provide
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Figure 3.9: BER in CW interference environment.
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Figure 3.10: Power spectra for CW interference environment.
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Detector Performance in 2CW Interference Environment
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Figure 3.11: BER in 2CW interference environment.
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Figure 3.12: Power spectra for 2CW interference environment.
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Figure 3.13: BER in MX interference environment.

over other standard detectors.

3.3 Performance Effects of Alternative Parame-
ter Values

A number of parameters exist within the ARLO detector whose values are a
major factor in its BER performance. Two such parameters were varied, to
determine their specific effect on the ARLO detector. Bh, the pdf estimation
parameter, defines the the number of symbols used in calculating the histogram
used in estimating the pdf of the received signal. P, the AR-model parameter,
defines the number of AR coefficients used in the AR-model. In addition, the
ISR, a variable external to the communication system, was varied for complete-
ness, as the power of an interference generator is an unknown and can be set to
any practical level.

3.3.1 Bh: pdf Estimation Parameter

The first variable tested was Bh, the number of symbols used to calculate the
histogram for pdf estimation. As will be discussed in chapter 4, Bh has a major
effect on the simulation runtime. Therefore, a practical limit of Bh = 128 was
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Figure 3.14: Power spectra for MX interference environment.

Detector Performance with No Interferer Present

—— ARLO
1 Correlator on whitened
O LO detector
— - LO on whitened
— Linear Correlator

o2 ©
(=]
=)
8
i
5]
ks
2-31
=
g
<] o
o

4l

-5 I I I I}

-15 -10 -5 0 5

Signal-to-Thermal Noise Ratio (dB)

Figure 3.15: BER with no interferer present.
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Figure 3.16: Number of bit errors at the receiver for every 100 bits transmitted,
at 0 dB SNR.

chosen. A lower value was also decided upon, Bh = 64. Figure 3.17 shows
the BER curve for a mixed interferer with Bh=128. Comparing this with the
BER curve in Figure 3.18, a mixed interference environment with Bh==64, it is
clear that a lower value of Bh results in a less-smooth plot. The BER varies
more dramatically with a lower Bh, making its results less predictable. While
the results are still good, the BER using Bh=64 never improves beyond 102,
implying that a lower Bh imposes a performance limit on the ARLO detector.
This agrees with theory, as pdf estimation improves when calculated using a
greater number of symbols. The better the noise pdf is estimated, the greater
effect the ARLO detector can have in overcoming the noise. These results
are corroborated in Figures 3.19 and 3.20, where a variable Bh is seen in a CW
interference environment. The same unpredictability is seen, with a higher BER
lower bound.
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Figure 3.17: BER curve in Mixed interference environment with Bh = 128.
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Figure 3.18: BER curve in Mixed interference environment with Bh = 64.
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Detector Performance in CW Interference Environment
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Figure 3.19: BER curve in CW interference environment with Bh = 128.
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Figure 3.20: BER curve in CW interference environment with Bh = 64.
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3.3.2 P: AR-model Parameter

The second variable tested was P, the number of AR coefficients used in the AR-
model. P also has an effect on runtime, as discussed in chapter 4, so the values
chosen for testing include P = [8, 16, 32]. Figures 3.21, 3.22, and 3.23 show
BER curves with 2CW interferers and a variable P. It is interesting to note that
as P decreases, the performance of ARLO increases. With P=32, the LOW and
LCW actually outperform ARLO, whereas with P=8, the ARLO probability of
bit error drops below 10~3. The BER curves, with the CW interferer, in Figures
3.24, 3.25, and 3.26 concur. The ARLO BER with P=8 actually drops below
1074
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Figure 3.21: BER curve for 2CW interference environment with P=32.

3.3.3 ISR: Interference Parameter

Varying the ISR increases the practical significance of the simulations, as there
is no guarantee how much interference power a communication system may face
in the channel. Since varying the ISR has no effect on the simulation runtime,
any practical values may be chosen. Tests were run using ISR = [20, 30, 40].
Figures 3.27, 3.28, and 3.29 show the BER performance in a PB interference
environment with varying ISR. As expected, the performance of the detectors
falls when more interference is present. ARLO continues to remain the best-
performing detector. In Figures 3.30, 3.31, and 3.32, where the CW interferer is
examined, detector performance also decreases as ISR increases. One thing to
note is that with ISR=40 dBW, the ARLO detector begins outperforming two
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Figure 3.22: BER curve for 2CW interference environment with P=16.
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Figure 3.23: BER curve for 2CW interference environment with P=8.

25



Detector Performance in CW Interference Environment
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Figure 3.24: BER curve for CW interference environment with P=32.
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Figure 3.25: BER curve for CW interference environment with P=16.
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Detector Performance in CW Interference Environment
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Figure 3.26: BER curve for CW interference environment with P=8.

other detectors. This shows the impressive robust nature of the ARLO detector,
even under heavy interference.

Detector Performance in PB Interference Environment
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Figure 3.27: BER curve for PB interference environment with ISR=20 dbW.
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Detector Performance in PB Interference Environment
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Figure 3.28: BER curve for PB interference environment with ISR=30 dbW.
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Figure 3.29: BER curve for PB interference environment with ISR=40 dbW.
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Detector Performance in CW Interference Environment
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Figure 3.30: BER curve for CW interference environment with ISR=20 dbW.
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Figure 3.31: BER curve for CW interference environment with ISR=30 dbW.
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Detector Performance in CW Interference Environment
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Figure 3.32: BER curve for CW interference environment with ISR=40 dbW.

3.4 Autoregressive Modeling

Two methods were examined in order to create an autoregressive model of the
received signal vector. The Modified Covariance Algorithm (MCA) was initially
chosen in this capacity because of its simplicity. The MCA generates a P"
order all-pole filter model to represent an input signal by minimizing the sum
of the forward and backward prediction errors to create a lattice model of a
random process. The forward prediction error is defined as,

P
et (n) = z(n) + Z a(k)z(n — k), (3.6)
k=1
and the backward prediction error is,
P
e (n)=z(n—-P)+ Za*(k)x(n —P+k), (3.7
k=1

where a* indicates conjugation, and P is the order of the all-pole filter. The
sum to be minimized is then,

N

eM = Z [|e+(n)|2 + |e*(n)|2] . (3.8)

n=P
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To find the filter coefficients, a(k), necessary to minimize ¢, (3.8) is manipu-
lated, with the result being the normal equations,

St [r2 (LK) + 74 (P =k, P = D)]a(k) = = [z (1,0) + 7 (P, P = 1)]

l=1,...,P » (39)
where 7, (I, k) is the auto-correlation of the process z(n),
N
re(l,k) = Z z(n —k)z*(n —1). (3.10)
n=P

Using (3.10) to obtain the auto-covariance sequences for the random process
within (3.9) allows the normal equations to be solved to obtain the filter coeffi-
cients, a (k).

The Burg method was also examined due to its performance characteristics.
However, tests revealed no significant performance enhancement. Therefore, the
MCA was chosen because of its simplicity.
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Chapter 4

Simulation Conversion

The conversion of the simulation into a high-level language is a major component
of this research project, for two reasons. First, it is expected that porting
the simulation into a compiled language will increase the execution speed over
the interpreted code used by MATLAB® . Second, with the ultimate goal
of implementing the ARLO detector on a DSP, many utilities exist that can
easily translate code written in certain high-level languages into DSP machine
language. Therefore, the porting of the code is the first step towards a hardware
implementation of the ARLO detector.

This chapter will thoroughly discuss the conversion process. The first sec-
tion will detail the runtime of the MATLAB® simulation, including the effect
that certain parameters have on execution time. The second section will dis-
cuss using the MATLAB® Compiler to port the simulation into C. The design
and planning for the conversion is covered in the third section, including choice
of language and platform options. The fourth section will discuss the functions
requiring conversion, as well as some major obstacles faced in the conversion pro-
cess. Finally, the fifth section discusses the results of the conversion, and com-
pares the output of the translated code to that of the MATLAB® simulation.

4.1 Timing Analysis

The runtime of the MATLAB® simulation, defined as the elapsed time between
the initial start time and the time the simulation finishes, is a major concern
because it is the sole determining factor of whether the ARLO detector can be
used in a real-time application, or whether its capabilities must be taken advan-
tage of offline. The initial timing analysis was performed using old hardware,
with the fastest system being a Pentium II 300 MHz, with 256 MB of RAM.
However, more current hardware has been obtained, and a new timing analysis
performed that agrees in relative terms with the initial analysis, but with faster
overall execution speed. The new system is a dual-processor Pentium III XEON
600MHz, with 1 GB of RAM. The results detailed below were measured from
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this new system, using the default parameters as defined in Table 3.1, unless
otherwise noted.

All of the timing results were very consistent, so two simulations were chosen
as a representative sample, the CW and PB cases. The overall runtime for the
two simulations are shown in Table 4.1, with a difference in overall runtime of
1 minute between the two simulations. Many events comprise the fifteen hour
runtime of the simulation. These include creating a data stream to transmit,
generating thermal background noise, generating the interferer, corrupting the
signal in the channel, and performing detection using all five detectors. This
being the case, the fifteen hour runtime is not, by itself, representative of the
time needed for ARLO to perform.

| Simulation Type | Runtime (hrs) |

CwW 15.1119
PB 15.1338

Table 4.1: Total runtime, in hours, of two representative simulations.
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Figure 4.1: Runtime of simulation with CW interferer, over SNR.

To obtain a greater understanding of the runtime, Figures 4.1 and 4.2 show
the runtime of each simulation, broken down by SNR iteration. The variability
of the plots is misleading, however, as the scale of the ordinate is expanded. The
runtime of each SNR ratio, as shown in Figure 4.1, varies from 0.7188 hours to
0.7202 hours, a negligible difference of 5 seconds. For analysis, the average time
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Figure 4.2: Runtime of simulation with PB interferer, over SNR.

per SNR iteration, for both simulations, is 0.72 hours, or 43.2 minutes. Each

SNR iteration is composed of 10 Monte Carlo (MC) iterations. So the average
MC iteration runtime is,

43.2min _ 4.32min

10 iteations  iteration’

(4.1)

More detailed study needs to be performed to get exact values (see Chapter 5),
but the ARLO detector, on a single data stream of 16,384 bits, requires approx-
imately four minutes to completely detect the received data stream. While fast,
ARLO is clearly not real-time capable in its current incarnation.

4.1.1 Simulation Runtime Effects of Alternate Parameter
Values

As discussed in section 3.3, where changing certain communication system pa-
rameter values results in different BER performance results, changing these
same parameters also often has an effect on the runtime of the simulation. Table
4.2 details the overall simulation runtime when changing the listed parameters.
Changing the two internal parameters has a noticeable effect on simulation run-
time. Halving Bh results in halving the simulation runtime, a clear 1:1 direct
relationship. Assuming all else remains constant, the ARLO detector takes ap-
proximately two minutes to decode a 16,384 bit data stream with Bh=64. This
is a great runtime performance improvement. But the drawback is that the
BER performance degrades, as shown in section 3.3.1. Changing the value of
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| Parameters | CW Case (hrs) |

[ Default (Bh=128, P—16, ISR—30 dB) | 15.1119 |
Bh=64 7.53
P=38 13.6032
P=32 20.2771
ISR—20 dB 15.1015
ISR=40 dB 15.1235

Table 4.2: Simulation runtime using alternate parameter values.

P also has an effect on performance. Reducing P to 8 results in a 9.4% run-
time performance increase, while increasing P to 32 results in a 34% runtime
performance loss. Changing the ISR, a variable external to the communication
system, has no effect on runtime, as expected.

4.2 The MATLAB® Compiler

As discussed in the introduction to this chapter on page 32, it is well-known that
MATLAB® code, while convenient, is inherently slow because the MATLAB®
program is an interpreter, which directly executes high-level language code with-
out first compiling it into machine language. The runtime of the simulation can
thus be greatly reduced if the mathematically intensive functions of the simula-
tion execute in C or C++, languages whose code is compiled before execution.

The ideal solution is to recode the simulation by hand into C or C++,
thereby optimizing it as much as possible. However, in order to get results
in the short term, an automatic, machine-generated translation is a good al-
ternative. The MATLAB® Compiler, in conjunction with a standard compiler
such as Microsoft Visual C++, translates most MATLAB® code into C. It then
compiles the C code into a MEX-file, a binary format directly accessible from
an M-file (the standard file used for MATLAB® code), i.e. the M-file syntax
to call a function located in another file is the same whether the target file is a
MEX-file or an M-file.

The major benefit of using MEX-files is its handling of loops. C and C++
are extremely efficient in executing any type of loop, whereas MATLAB® is
notoriously poor [6, pp. 4], simply due to its status as an interpreter. This, in
itself, is not enough to give a dramatic improvement in simulation runtime be-
cause the current code uses few large loops. However, the MATLAB® Compiler
provides numerous compilation options that can further enhance the runtime.
They allow the compiler to generate simpler data types, resulting in simpler,
and thus faster, code.

Two of the options available are particularly applicable, and provide a huge
performance increase when used in combination. The first is the assertion that
all floating-point variables contain real numbers. This allows the compiler to
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remove all code whose purpose is to handle complex numbers, thereby reducing
the complexity of the code and, thus, the runtime. The second option generates
code that restricts matrices from growing beyond their initial size and, conse-
quently, never checks a matrices’ bounds. Using these two assertions to create
MEX-files, the simulation runtime decreases by roughly a factor of two.

One problem arose while running simulations using the MEX-files. Depend-
ing on the specific parameters of the simulation, the pdf estimation sometimes
resulted in complex AR coefficients. This caused the simulation to stop exe-
cuting, with an appropriate error message. Recompiling the MEX-files without
the real number assertion will remove this error. However, that assertion is the
primary factor in the speed increase of the simulation. Thus, removing this
assertion will likely negate much of the performance improvement [6, pp. 15].

As promising as using the MATLAB® Compiler appears, we receive no
performance benefit from it if the speed-increasing assertions cannot be used.
Therefore, to convert the simulation to a high-level language, porting it by hand
is necessary.

4.3 Software Design

As in all programming projects, detailed planning must precede the actual cod-
ing process. The first important issue is to decide which programming language
will be optimal for this project. Both C and C++ were considered due to their
common usage as DSP languages. Since C supports structured programming,
and this method provides a good representation of the simulation, our program
will not benefit from the object-oriented extensions that C++ provides. There-
fore, C was chosen as the programming language.

The next important issue is the platform on which the simulation will be de-
veloped. One option is Linux, which provides solid stability, as well as improved
performance and memory management over Microsoft Windows® . Windows,
however, is more accessible to the people who will be performing the code trans-
lation, and it provides an enhanced development and debugging environment in
Microsoft Visual C++ 6.0%® . Therefore, Windows was chosen as the develop-
ment platform. However, in order not to restrict future development, we decided
to write the code using only standard ANSI C features, which should make it
highly portable to Linux, if desired.

The last issue is to decide which data type would best represent the signal
samples used in the simulation. MIX Software’s C/Math Toolchest(©), which
provides vector and matrix math libraries, can be compiled to use either float-
ing point precision or double precision. Double precision is clearly superior in
its ability to provide a very accurate representation of the signals. But since
MATLAB® uses double precision, and numerous problems have arisen regard-
ing memory usage in past simulations, floating point precision was chosen to
determine if the added precision is necessary or if it poses an inefficient use of
computing resources.
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4.3.1 Simulation Block Diagram

To convert the simulation into C, it is imperative to understand the commu-
nication system being simulated. An excellent way of accomplishing this is to
study a visual representation of the communication system. The block diagram,
shown in Figure 4.3, was created for this purpose.

Nonlinearity

g(p) " 52
p . J o I T e 7 st
Estimate Estimate .
N e Filter .
See ()
P-1
Sequence
(a)
________ ———
Estimate h’
Filter

4 parameters |

Figure 4.3: (a) ARLO system block diagram. (b) Expanded view of FEstimate
h’ block.

Figure 4.3a provides the overall signal flow of the receiver. Figure 4.3b
illustrates the detail of the nonlinearity for estimation of the function h’ (to
be described later). In Figure 4.3a, p is the received signal vector of length
N, which is composed of both the signal sent by the transmitter and the noise
present in the channel. The receiver must first calculate the LO nonlinearity,
g (p), which is individually calculated for each incoming symbol in p, each of
which is composed of N, samples per symbol. The next step is to de-spread the
“chipped” data by using the pseudo-noise (PN) sequence. Finally, an estimate
of the transmitted signal, est[s], is computed by summing the de-spread samples
of the symbols and thresholding.

The receiver output, est[s], is highly dependent on the nonlinearity compu-
tation. This computation is a multi-step process. The first step in calculating
the LO nonlinearity is the computation of the Pt"—order AR model coefficients,
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{d;}, i =0,1,2,...,P. To date, the modified covariance algorithm (MCA) is
used for this purpose. The second step is to estimate the pdf of the noise. This
is currently accomplished via a histogram approximation method. This process
is shown in detail in Figure 4.3b. The received signal, p, passes through the
AR filter, with coefficients {d;}, as shown in Figure 4.3a, to create a whitened
signal vector, w. The histogram of w is then computed. The result represents
the pdf of the whitened received signal
The pdf of the noise component of w can be written as,

fn (77) = fn(TI177727---777N)

, 4.2
= Héi1fn(771|77z'—1;---;77i—P) ( )
where
fn,' (771)7 fori =1
frs i I M1, smimp) = Jni (m [ Mie1y oo sm) s - (4.3)
fori=2,...,P
This can be rewritten as,
N P
fo) = JIfe|-D amii], (4.4)
i=1 7=0
where f,, (w) is the pdf of the white noise process and ag = —1. The result of

this block, as estimate of h', est[h’], is the derivative of the natural log of the
pdf of w, that is,

st (@)] = < {inffu @]} (4.5)

The next, and final, step in calculating g (p) is to use p and h’ in the filtering
process,

min(P,N—i) P
9 (U) = Z alh' —Zajviﬂ,j ; for i = 1,...,N, (46)
1=0 §=0
where
0, fori <0
vi = { pi, fori € [1,N] ~ (4.7)

4.4 Code Translation

The simulation is composed of two distinct sections. The first section imple-
ments the direct sequence spread spectrum generator, the communication chan-
nel, including a thermal noise generator and interference generator, and the
linear correlator receiver. The second part of the simulation contains the non-
linear LO receivers. The conversion into C was performed along these lines.
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4.4.1 Function List

Since the research team decided to port the simulation, based on the MATLAB®
simulation, into C, the functional breakdown required in C will be very similar
to that used in MATLAB® . The list of functions in the completed C code
include the following:

ar_histo.c: Estimates the pdf of a white noise process, without assuming
any underlying structure for the white noise pdf.

ar_theory.c: Estimates the pdf of a white noise process, assuming that
the pdf of the white noise has a known underlying structure, i.e. Gaussian,
Poisson, or Laplacian.

contwave.c: Creates CW interferer.

conv.c: Performs convolution of two vectors of polynomial coefficients.
decision.c: Makes decision on received symbol.

dsss.c: Generates direct-sequence spread-spectrum signal.

fftshift.c: Swaps left and right halves of an input vector, placing the DC
(frequency=0) component in the middle of the spectrum.

filter.c: Filters a data stream based on input filter coefficients.

fliplr.c: Flips the columns of a matrix in the left-right direction about a
vertical axis.

flipud.c: Flips the rows of a matrix in the up-down direction about a
horizontal axis.

hist.c: Creates histogram of a data stream.

modcov.c: Finds P*-order all-pole model for a signal using the MCA
method.

nlp.c: Calculates the LO nonlinearity, g (p) .

read parms.c: Inputs the simulation parameters from a configuration file.
receiver.c: Performs synchronous reception of a transmitted signal.
reshape.c: Reshapes a matrix.

simulation.c: Main program simulation file.

th_inter.c: Creates a theoretical PB interferer.

toeplitz.c: Creates a Toeplitz matrix from two input vectors.

The list of header files include:
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e mathlib.h: Header file for C/Math Toolchest® .
e function list.h: Function prototypes.
e sim parameters.h: Simulation global variable declarations.

e sim parameters extern.h: Simulation global variable declarations, exter-
nalized.

The complete source code for the simulation can be found in Appendix A.

4.4.2 Plotting Scripts

After debugging was complete, the research team required a method to plot
the results of the simulation, in order to compare its output with that of
MATLAB® . With the final goal of running the ARLO detector on a DSP, it is
unnecessary to write a routine in C which will handle BER plotting, especially
since graphical coding in C would add a level of complexity to the conversion
attempt that is not required. Since MATLAB® is particularly suited for graph-
ical plotting, a script was written in MATLAB® that can read in the output of
a C simulation from a file and graph the BER and spectral plots. These plots
can then be compared with those from a MATLAB® simulation, for testing
purposes. The source code for this script can be seen in Appendix B.

4.5 Conversion Results

The results of the conversion were highly successful. Comparisons of BER per-
formance, using identical system parameters, of the C and MATLAB®  simu-
lations are shown in Figures 4.4, 4.5, 4.6, and 4.7. From these figures, it is clear
that the simulation has been successfully ported to C, as the BER curves are
nearly identical.

The power spectra curve of the PB scenario, shown in Figures 4.8 and 4.9,
are also nearly identical, therefore showing that the conversion was a success.
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Detector Performance in PB Interference Environment
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Figure 4.4: C Simulation: BER curve in PB interference environment.
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Figure 4.5: MATLAB® Simulation: BER curve in PB interference environment.
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Detector Performance in 2CW Interference Environment
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Figure 4.6: C Simulation: BER curve in 2CW interference environment.

Detector Performance in 2CW Interference Environment

|
iN

—— ARLO
Correlator on whitened
O LO detector
— — LO on whitened
— Linear Correlator

Probability of Bit Error (10%)

!
N
T

-3 L L L |
-15 -10 -5 0 5

Signal-to-Thermal Noise Ratio (dB)

Figure 4.7: MATLAB® Simulation: BER curve in 2CW interference environ-
ment.
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Power Spectra for PB Interference Environment
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Figure 4.8: C Simulation: Power spectra of PB interference environment.
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Figure 4.9: MATLAB® Simulation: Power spectra of PB interference environ-
ment.
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Chapter 5

Summary and Future
Research

In summary, the work performed by the research team was highly successful.
The performance tests expanded on previous research to prove the efficacy of
the ARLO detector in intense interference environments, as well as its supe-
rior BER performance in most every scenario over the other popular detector
algorithms. Simulation results also showed that, in a non-hostile channel with
zero interference, the performance differential between ARLO and the optimum
linear correlator were negligible.

The conversion of the simulation into C was also a major milestone for
the research team. Intelligent choices were decided upon with regard to the
fundamentals of the conversion, including its platform, chosen programming
language, and library selection. The conversion was completed and thoroughly
tested to be equivalent to its MATLAB® predecessor.

Future work is needed to bring the ARLO detector into service. The C
simulation performs at a much slower rate than the MATLAB® version. Since
the C version is necessary for downloading the detector onto a digital signal
processor (DSP), a detailed study of the required operating time of each module
of the simulation is required to examine the feasibility of the ARLO detector for
real-time applications. To accomplish these goals, the proposed research tasks
include the following:

e Perform a detailed study and comparison of the runtime of the C and
MATLAB® codes

e Optimize the C code to achieve maximum detector runtime performance
e Research other matrix libraries for decreased runtime

e Study the advantages and disadvantages of adapting the C' code to execute
on a Linux-based system
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e Convert the C' code for use on a Linux-based system

e Continue research on Parzen’s estimator, and compare its performance
with that of the histogram method.

5.1 Future Research Details

5.1.1 Runtime Study

The first area of future research is to perform a detailed timing analysis of
the C-coded simulation (CCS). This includes gathering runtime data for each
individual module of the CCS, comparing it to the timing results previously
obtained from the MATLAB® -coded simulation (MCS), and determining which
processes are consuming the most execution time. The most time-consuming
modules will be examined more closely to ascertain the reasons behind this
performance lag. Parameter variation, and its effect on runtime, will also be
examined through structured simulations and timing comparisons.

5.1.2 Code Optimization

The current execution speed of the CCS is below expectations due to the re-
search team’s previous focus on obtaining total functionality at the expense of
other factors. For effective, real-time application, it is imperative to increase
execution speed. One method to accomplish this is to optimize the code itself,
focusing primarily on modules exhibiting large execution time as measured in
the runtime study (see 5.1.1). In addition, the compilers and linkers used in
building this application have a great many optimization options to exploit for
increased performance of the CCS. The simulation can also be adapted to run
without including debugging information in the compiled executable, which will
potentially result in a noticeable performance increase.

5.1.3 Matrix Libraries

To provide standard matrix and vector operations and manipulations, the CCS
makes use of the C/Math Toolchest™ code library. This code library, while
inexpensive, easy to use, and fairly complete, is not optimized for current pro-
cessors. Another area of future research is, therefore, to locate and study other
matrix libraries, both open-source and commercial, and determine their suit-
ability for the CCS. If a library is found that can potentially enhance detector
performance, the research team will use its extensive programming experience
to adapt the CCS to use the new library. The team will then perform a new de-
tailed timing analysis to determine the exact performance benefits reaped from
its use.
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5.1.4 Platform Migration

The CCS was coded using Microsoft Visual C++ 6.0, running under Microsoft
Windows 2000. It was written using standard ANSI C (no Microsoft extensions
to C were used) to retain maximum portability. The proposed research includes
examining whether CCS performance under Linux using a native C compiler,
such as the GNU Compiler Collection (GCC), may give improved performance
over the Microsoft-centric implementation. In the event that it does, the re-
search team will migrate the code to Linux to harness the performance benefits
of this operating system.

5.1.5 Parzen’s Estimator

Further research is needed in order to determine if this new method definitely
outperforms the histogram method. The performance time, input data size
requirements, as well as the diversity of each method must be more closely
examined. Future research may also include testing the performance of the
Parzen estimator when alternative RBFs are used, as well as possibly researching
other pdf estimation methods.
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Appendix A

Simulation Source Code

A.1 Header Files

A.1.1 Function list.h

/* Function prototypes */
void ar_histo (Real_Vector stimulus, unsigned stimulus_length, Real_Vector a,
unsigned a_length, Real_Vector h, Real_Vector bin_width,
Real_Vector mini);
/* bin_width & mini are vectors to enable pass-by-reference */
void ar_theory (int iidparms[], char iidtype[], int ISR, Real K, Real T,
Real_Vector h);
void contwave (Real_Vector interferer);
void conv (Real_Vector vi, int lengthl, Real Vector v2, int length2,
Real_Vector output);
void decision (Real_Vector pn, Real_Vector g, Real_Vector decision);
void dsss (Real_Vector ref, int amp, Real_Vector coded_data,
Real_Vector chips);
void fftshift (Complex_Vector vi, unsigned int lengthi);
void filter (Real_Vector b, int M, Real_Vector a, int N,
Real_Vector data_in, int input_length, Real_Vector y);
Real_Matrix fliplr (Real_Matrix M, unsigned m, unsigned n);
Real_Matrix flipud (Real_Matrix M, unsigned m, unsigned n);
void hist (Real_Vector signal, unsigned signal_length, unsigned nbins,
Real_Vector freq, Real_Vector bincenter);
void modcov (Real_Vector x, unsigned x_length, unsigned p,
Real_Vector ARparm, Real error);
Real_Vector nlp (Real_Vector r, unsigned int r_length, Real_Vector mini,
Real_Vector h, unsigned int h_length, Real_Vector bw,
Real_Vector a, unsigned int a_length,
unsigned int g_length);
int read_parms (char *filename);
void receiver (Real_Vector signal, Real_Vector noise, char *limit,
Real_Vector rcvd_tr);
Real_Matrix reshape (Real_Matrix M, unsigned mi, unsigned ni, unsigned m2,
unsigned n2);
void th_inter (Real_Vector interferer);
Real_Matrix toeplitz (Real_Vector coll, Real_Vector rowl, unsigned int nct,
unsigned int nri);

A.1.2 Sim_parameters.h

/% Simulation Parameters
*
*
* By: Michael Banys
*
* January 26, 2000
*/
int
/* Book keeping parameters */
it, /* Number of Monte Carlo iterations */
Bh, /* Total number of symbols to calculate histogram */
K, /* Data points to calculate */
T, /* Range of support for pdf */
z, /* Multiplier for determining number of transmitted symbols */
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/% Spread spectrum parameters */
Nc, /* Samples per chip */
PG, /* Processing gain (chips per bit) */
Nb, /* Samples per symbol (assume symbol==bit) */
B, /* Symbols transmitted/received and sent to BER tester */
Ntot, /* Total number of samples in run */

/* AR Model parameters */
Bar, /* Total number of symbols to estimate AR parms */
Bg, /* Total number of symbols to calculate nlp */

/* Signal parameters & Thermal Noise */
sigmat, /* Standard deviation of thermal noise */
sigmat2, /* Variance of thermal noise */

Eb_min, /* Minimum value of thermal SNR in dB */
Eb_max, /* Maximum value of thermal SNR in dB */

/* Correlated interferer parameters */
ISR, /* Interferer-to-Signal ratio (dB) */

/* Continuous Wave Interference */
I, /* Number of CW interferers: 1 or 2 */
P, /* Number of AR filter coefficients */

/* Wide-band filtered white-noise jammers */
L, /* ... for a filter of order 2°L */
iidparms[2], /* Parameter vector for iidtype */

/* Mixed Jammer */
ISRcw, /* Divide up interferer power */
ISRpb;
float
/* Continuous Wave Jammer */
freq[2], /* CW Interferer frequency(s) */

/* Wide-band filtered white-noise jammers */
polynomiall2]; /* The pole of the low-pass filter */
char
/* AR Model Parameters */
ar_method[5], /* Coefficient estimation method
mcov? = Modified Covariance */

/* Signal Parameters and Thermal Noise */
limit[5], /* Limiter on noise:
‘hard’ - noise blanker
Jsoft? - soft limiter */

/* Correlated interferer parameters */
Itypel[3], /* Interference type:
Jcw’ - Continuous Wave
’pb? - Partial Band
‘mx’ - Mixed Partial Band and CW */

/* Wideband filtered white-noise jammer */

iidtypel3]; /% The type of iid noise sequence */
Real Vector Eb_sigma, poly, a_t;

A.1.3 Sim_parameters extern.h

/* Simulation Parameters (extern)
*
*
* By: Michael Banys
*
* January 26, 2000
*/
extern int
/* Book keeping parameters */
it, /* Number of Monte Carlo iterations */
Bh, /* Total number of symbols to calculate histogram */
K, /* Data points to calculate */
T, /* Range of support for pdf */
z, /* Multiplier for determining number of transmitted symbols */

/* Spread spectrum parameters */
Nc, /* Samples per chip */
PG, /* Processing gain (chips per bit) */
Nb, /* Samples per symbol (assume symbol==bit) */
B, /* Symbols transmitted/received and sent to BER tester #/
Ntot, /* Total number of samples in run */

/* AR Model parameters */
Bar, /* Total number of symbols to estimate AR parms */

Bg, /* Total number of symbols to calculate nlp */

/* Signal parameters & Thermal Noise */
sigmat, /* Standard deviation of thermal noise */
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sigmat2, /* Variance of thermal noise */
Eb_min, /* Minimum value of thermal SNR in dB */
Eb_max, /* Maximum value of thermal SNR in dB */

/* Correlated interferer parameters */
ISR, /* Interferer-to-Signal ratio (dB) */

/* Continuous Wave Interference */
I, /* Number of CW interferers: 1 or 2 */
P, /* Number of AR filter coefficients #/

/% Wide-band filtered white-noise jammers */
L, /* ... for a filter of order 2°L */
iidparms[2], /* Parameter vector for iidtype */

/* Mixed Jammer */
ISRcw, /* Divide up interferer power */
ISRpb;
extern float
/* Continuous Wave Jammer */
freq[2], /* CW Interferer frequency(s) */

/* Wide-band filtered white-noise jammers */
polynomial[2]; /% The pole of the low-pass filter */
extern char
/* AR Model Parameters */
ar_method[5], /* Coefficient estimation method
‘mcov’ = Modified Covariance */

/* Signal Parameters and Thermal Noise */
1limit[5], /* Limiter on noise:
‘hard’ - noise blanker
Jsoft? - soft limiter */

/* Correlated interferer parameters */
Itypel3], /* Interference type:
Jcw? - Continuous Wave
’pb? - Partial Band
'mx’ - Mixed Partial Band and CW */

/* Wideband filtered white-noise jammer */
iidtypel[3]; /% The type of iid noise sequence */
extern Real_Vector Eb_sigma, poly, a_t;

A.2 Program Code Files

A.2.1 Simulation.c

/* Program Simulation main file
*
*
* By: Michael Banys
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include "mathlib.h"
#include "sim_parameters.h"
#include "function_list.h"
void
main (int argc, char *argv[l)

/% PROGRAM DECLARATIONS */

int i, j, /* Counter variable #/
saveData, /* To control saving data only once */
where_running, /* To determine where to save data */
snr, /* SNR iteration */
pe_avg, /* Monte Carlo iteration */
amp, /* Voltage amplitude of signal */
Nsamh, /* Number of samples in each histogram = Bh#Nb */
histonum, /* Process Bh#Nb samples at a time for a histogram (loop var) */
syment; /* Counter for each symbol in AR section */
Real sym_amp, /* Symbol amplitude assuming chip-matched filtering */
num_errs_lc, /% Number of errors for linear correlator */
num_errs_vc, /* Number of errors for lc on whitened */
num_errs_lo, /* Number of errors for lo */
num_errs_lw, /* Number of errors for lu */
num_errs_ar, /* Number of errors for ar #*/
error; /* Error in modcov() #/
Real_Vector temp, temp2, /* Temp storage */
ref, /* BPSK modulated signal */
chips, /* PN Sequence */
coded_data, /% Sampled & PN-modulated data signal */
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interferer, /* Interferer */

noise, /* Total noise environment */

rcvd_tr, /% Received signal (r=s+n) */

whitened, /* Whitened rcvd_tr */

a_hat, /* AR parameter estimate vector */
a_hat_negi, /* As above, except a_hat_negi[0]=-1, length = 1 x/
g-lo, g_ar, g_lw, /* Initialize LO, AR, and LO on Wh. detectors */

g_temp, /* Temp storage for g, holding one symbol’s worth */
lc_dec, /% linear correlator decision vector */
lo_dec, /* Locally Optimium decision vector */
lw_dec, /% LO on whitened decision vector */
ar_dec, /% ARLO decision vector */

wc_dec, /% 1c on whitened decision vector */
Pb_lc_avg, /* Average Plerr] x/

Pb_wc_avg, Pb_lo_avg, Pb_lw_avg, Pb_ar_avg, block, /* Block to prepare for histogram /

symbol, /* One symbol */

symbolindx, /* Index to separate out symbols from bitstream */
filsym, /* whitened symbol */

h_lo, h_wh, /* L0 h() & AR h() */

bu_lo, bu_wh, /* LO & AR bin_width */

min_lo, min_wh;
Real_Matrix Pb_lc,
Pb_wc, Pb_lo, Pb_lw, Pb_ar;
FILE #Pblc, *Pbwc, *Pblo, *Pblw, *Pbar, *snr_vals,
*interferer_out, *noise_out, *rcvd_tr_out, *a_hat_out, *ref_out;
long ltime; /* For rand() usage */
if (arge != 2) /* Parameter file check */

/* min value of histogram/pdf LO & AR */
/* Plerr] for lc */

printf ("You forgot to enter the parameter filename.\n");
exit (1);
}
read_parms (argv[1l); /* Read simulation parameters from file */
/#**xxxx%% Vector and matrix creation ikkk*¥x¥kx/
ref = valloc (NULL, B); /* Create signal */
coded_data = valloc (NULL, Nb * B); /* Sampled & PN-modulated data signal */
chips = valloc (NULL, Nb * B); /* Chip sequence */
interferer = valloc (NULL, Ntot); /* Create interferer */
noise = valloc (NULL, Ntot);
rcvd_tr = valloc (NULL, Ntot);
whitened = valloc (NULL, Ntot); /* whitened rcvd_tr */
a_hat = valloc (NULL, P + 1); /* AR parameter estimate vector */
a_hat_negl = valloc (NULL, 1); /* a_hat[0]=-1, length(a_hat) = 1 */
g_lo = valloc (NULL, Ntot); /% L0 detector */
g-ar = valloc (NULL, Ntot); /% AR detector */
g_lw = valloc (NULL, Ntot); /* LO on Wh. detector */
g_temp = valloc (NULL, Nb); /% To hold one symbol’s worth of information */

Pb_lc = mxalloc (NULL, it, Eb_max - Eb_min + 1);
Pb_wc = mxalloc (NULL, it, Eb_max - Eb_min + 1);
Pb_lo = mxalloc (NULL, it, Eb_max - Eb_min + 1);
Pb_lw = mxalloc (NULL, it, Eb_max - Eb_min + 1);
Pb_ar = mxalloc (NULL, it, Eb_max - Eb_min + 1);

(NULL, Eb_max - Eb_min + 1);

(NULL, Eb_max - Eb_min + 1);

(NULL, Eb_max - Eb_min + 1);

Pb_lw_avg = valloc (NULL, Eb_max - Eb_min + 1);

Pb_ar_avg = valloc (NULL, Eb_max - Eb_min + 1);

block = valloc (NULL, Bh * Nb); /* block to prepare for histogram */
symbol = valloc (NULL, Nb); /* Single symbol */

symbolindx = valloc (NULL, Nb);

Pb_lc_avg = valloc
Pb_wc_avg = valloc
Pb_lo_avg = valloc

filsym = valloc (NULL, Nb); /% whitened symbol */

we_dec = valloc (NULL, B); /% allocate decision vector */
lc_dec = valloc (NULL, B);

lo_dec = valloc (NULL, B);

lw_dec = valloc (NULL, B);

ar_dec = valloc (NULL, B);

h_lo = valloc (NULL, K + 1);

h_wh = valloc (NULL, K + 1);

bw_lo = valloc (NULL, 1);

bw_wh = valloc (NULL, 1);

min_lo = valloc (NULL, 1);

min_wh = valloc (NULL, 1);
/**xxxxxxxkx End creation section skxskkmxkkx/

a_hat_negi[0] = -1.0; /* Assign value */

saveData = 1; /* Save data first time through */

where_running = 1; /% 1=Sundevil, 2=L90 */

for (snr = 0; snr < Eb_max - Eb_min + 1; snr++) /* Iterate over each snr */

/* "h" function */
/* bin_width LO & AR */

/* min value of histogram LO & AR */

for (pe_avg = 0; pe_avg < it; pe_avg++t) /* Iterate Monte Carlo */

/* For rand() */

1time = time (NULL)j

srand ((unsigned) ltime / 2);
for (i = 0; i < B; i++)

/* compute seed for rand() */
/* Create random signal */

*(ref + i) = (2 * (Real) rand () / RAND_MAX)
if (k(ref + i) < 0)

- 1.0;

*(ref + i) = -1.0;
else if (*(ref + i) > 0)
*(ref + i) = 1.0;

else
#(ref + i) = 0.0;
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}
sym_amp = sqrt ((double) sigmat2 * Eb_sigmalsnrl); /% Symbol amplitude assuming chip-

/* NOTE: Let the signal have amplitude of ’1’ and then divide the thermal noise
by the symbol amplitude (below, in ’implement the channel’ ) */

amp = 1;

dsss (ref, amp, coded_data, chips); /* Transmitted DSSS signal */

printf ("DSSS done, [it,snrl=[%i,%il\n", pe_avg, snr); /* Progress indicator */

/*#xxxxxxexx Inplement the Channel ##skssskrxrrrs/

vinit (interferer, Ntot, 0.0); /* initialize interferer to zero */

if ((Itype[0] == ’c?) && (Itype[1] == ’w’))
contwave (interferer);

else if ((Itype[0] == ’p*) && (Itypel1]
th_inter (interferer);

else if ((Itype[0] == °m’) && (Itype[1] == ’x’))
{

b))

th_inter (interferer);
contwave (interferer);

printf ("Interferer donme, [it,snrl=[%4i,%il\n", pe_avg, snr); /* Progress Indicator */
/¥¥xkkxkkxx Add thermal noise with a Gaussian pdf of N(mu=0, sigmat~2)
to the correlated interferer (and additive channel is assumed ) */
for (i = 0; i < Ntot; i++)

*(noise + i) = *(interferer + i) +

(((double) sigmat / sym_amp) * normal (1, 0));

/*#*xxxexkxk Implement the observed signal kkkkkkkkkkrkrsr/
receiver (coded_data, noise, limit, rcvd_tr);

printf ("Receiver donme [it,snr]l=[%i,%il\n", pe_avg, snr); /* Progress Indicator */
/*¥xxxxkkkkx PRINT OUT data for spectrum plots *kkkkkkkkkkdk/
if (saveData == 1)

// For Sundevil

if (where_running == 1)
{
interferer_out =
fopen
("x:\\documents\\research\\conversion\\results\\interferer_out.txt",
")
noise_out =
fopen
("x:\\documents\\research\\conversion\\results\\noise_out.txt",
) 5
rcvd_tr_out =
fopen
("x:\\documents\\research\\conversion\\results\\rcvd_tr_out.txt",
)
a_hat_out =
fopen
("x:\\documents\\research\\conversion\\results\\a_hat_out.txt",
)3
// For L90
if (where_running == 2)
interferer_out =
fopen ("c:\\temp\\mike\\results\\interferer_out.txt",
"W");
noise_out =
fopen ("c:\\temp\\mike\\results\\noise_out.txt", "w");
revd_tr_out =
fopen ("c:\\temp\\mike\\results\\rcvd_tr_out.txt", "w");
a_hat_out =
fopen ("c:\\temp\\mike\\results\\a_hat_out.txt", "w");
}
for (i = 0; i < Ntot; i++)
{
fprintf (interferer_out, "%f\n", interferer[il);
fprintf (noise_out, "%f\n", noise[il);
fprintf (rcvd_tr_out, "%f\n", rcvd_tr[il);
}

fclose (interferer_out);

fclose (noise_out);

fclose (rcvd_tr_out);

saveData = 03 // Don’t save data anymore

/*¥*k*xxxxxk% Implement a linear receiver with truncation *kksks*¥¥¥kkkk*/
decision (chips, recvd_tr, lc_dec);
printf ("LC: Decision dome, [it,snrl=[%i,%il\n", pe_avg, snr); /* Progress Indicator */
for (i = 0, num_errs_lc = 0.0; i < B; i++) /* Find no. of error for linear correlator */
num_errs_lc = num_errs_lc + (0.5 * abs ((lc_dec[i] - ref[il)));
/*#kkkkxxkxkik Implement LO Detector Techniques kkkkskkkkkkkkkkkkkkkkk/
/* Find the appropriate whitemer */
j = (int) (floor (Ntot / (B / Bar)) - 1); /* last array element of interest */
temp = valloc (NULL, j); /* allocate for passing in partial rcvd_tr */
for (i = 0; i < j; it++)
*(temp + i) = *(rcvd_tr + i); /# Copy rcvd_tr[] into temp[] */

modcov (temp, j, P, a_hat, error); /% Find the whitener */

viree (temp); /* clean up */

/*¥*k¥xkxxxxx Implement a linear correlator on the whitened signal ¥¥xxkk*/
temp = valloc (NULL, 1); /* create vector with one element = 1 */
temp[0] = 1;
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/% find whitened received signal */
filter (vscale (a_hat, P + 1, -1.0), P + 1, temp, 1, rcvd_tr,
Ntot, whitened);

viree (temp); /* clean up */

decision (chips, whitened, wc_dec);  /* make decisions */

printf ("LC on Wh: Decision done, [it,snrl=[%i,%il\n", pe_avg, snr); /+ Progress */
for (i = 0, num_errs_wc = 0.0; i < B; i++) /* Find no. of errors for LC on wh. %/

num_errs_wc = num_errs_wc + (0.5 * abs ((wc_dec[i] - ref[il)));
/*#xxxxxxxxrrrs Implement ARLO and LO Receivers #kxsxkssskrxsss/
/* Preparation */
vinit (g_lo, Ntot, 0.0); /* Initialize to 0.0 */
vinit (g_ar, Ntot, 0.0);
vinit (g_1lw, Ntot, 0.0);
Nsamh = Bh * Nb; /* Number of samples in each histogram */
temp2 = valloc (NULL, 1); /* Allocate for a_hat=-1 (P=0) */
temp2[0] = -1;
for (histonum = 0; histonum < ((int) floor (B / Bh)); histonum++)
/* Process Bh*Nb samples
at a time for a histogram */
vinit (block, Nsamh, 0.0); /% Init block to prepare for histogram */
for (i = histonum * Nsamh, j = 0;
i < ((histonum + 1) * Nsamh - 1); i++, j++)
#(block + j) = *(rcvd_tr + i); /* Apply the correct symbols */

temp = valloc (NULL, 1); /* Allocate temp[0] = -1 for LO case */
temp[0] = -1;
ar_histo (block, Bh * Nb, temp, 1, h_lo, bw_lo, min_lo); /* LO (P=0) a_0=-1 %/

ar_histo (block, Bh * Nb, a_hat, P + 1, h_wh, bu_wh, min_wh); /* AR methods */
viree (temp); /* clean up */

for (symcnt = 0; syment < Bh; symcnt++) /* Apply nonlinearity to each symbol */
{
vinit (symbol, Nb, 0.0); /* Look at one symbol */
i = histonum * Nsamh + ((symcnt - 1) * Nb); /*Find indices of current symbol */
for (j = 0; j < Nbj j++)
1{

*(symbolindx + j) = i + j;
*(symbol + j) = x(recvd_tr + i + j); /* Get current symbol */
*(filsym + j) = *(whitened + i + j); /% Get current whitened symbol */

}
temp = valloc (NULL, Nb); /* To hold g_xx[symbolindx] */
temp = nlp (symbol, Nb, min_lo, h_lo, K + 1, bu_lo, a_hat_negl, 1, Nb); /* lo detector */
for (i = symbolindx[0], j = 0; j < Nbj i++, j++) /+ hssign g_lo = temp %/

*(g_lo + 1) = *(temp + j);
temp = nlp (filsym, Nb, min_wh, h_wh, K + 1, bw_wh, a_hat_negl, 1, Nb); /* 1lu detector */
for (i = symbolindx[0], j = 0; j < Nb; i++, j++) /% Assign g_lw = temp */

*(g_1w + 1) = *(temp + j);
temp = nlp (symbol, Nb, min_wh, h_wh, K + 1, bw_wh, a_hat, P + 1, Nb); /* ar detector */
for (i = symbolindx[0], j = 0; j < Nb; i++, j++) /* Assign g_ar = temp */

*(g_1w + i) = *(temp + j);

3
viree (temp2);
/*#xxxxxkkxernns Make ARLO and LO Detector DeciSIions kkskkkkdsskkskkrskksss/
decision (chips, g_lo, lo_dec); /% make decisions */
printf ("LO: Decision dome, [it,snrl=[%i,%il\n", pe_avg, snr); /* Progress */
decision (chips, g_lw, lw_dec);
printf ("LW: Decision dome, [it,snrl=[%i,%il\n", pe_avg, snr); /* Progress */
decision (chips, g_ar, ar_dec);
printf ("AR: Decision dome, [it,snr]l=[%i,%il\n", pe_avg, snr); /* Progress */

for (i = 0, num_errs_lo = 0.0, num_errs_lw = 0.0, num_errs_ar = 0.0; i < B; i++) /* Count number of errors */
{
num_errs_lo = num_errs_lo + (0.5 * abs ((lo_dec[i] - ref[il))); /* lo errors */
num_errs_lw = num_errs_lw + (0.5 * abs ((lw_dec[i] - ref[il))); /* 1u errors */
num_errs_ar = num_errs_ar + (0.5 * abs ((ar_dec[i] - ref[i]))); /* ar errors */
3

//vfree(lo_dec) ;vfree(lu_dec) ;vfree(ar_dec);
/*¥*k¥¥kxxkxk4% Compute probability of bit error for this MC iteration and this snr */
Pb_lc[pe_avgl [snr] = num_errs_lc /* linear correlator */
Pb_wc[pe_avg] [snr] = num_errs_wuc
Pb_lo[pe_avg] [snr] = num_errs_lo
Pb_lw[pe_avg] [snr] = num_errs_lw
Pb_ar[pe_avg] [snr] = num_errs_ar
printf ("Monte Carlo Iteration %i dome, [snr]=[%il\n\n", pe_avg, snr); /* Progress Indicator */

NSNSNS S

B;
B;
B;
B;
B;

} /* End Monte Carlo Iteration */
printf ("SNR iteration %i dome. \n\n", Eb_min + snr); /% Progress Indicator */
} /* End SNR iteration */
/¥xkkxkkdxkdxk% Compute average Plerr] from MC analysis *kkkxikkxks/
temp = valloc (NULL, 5); /* & different receivers */
for (i = 0; i < (Eb_max - Eb_min + 1); i++)
{
vinit (temp, 5, 0.0); /* Initialize temp to zeros */

for (j = 03 j < it; j++) /* Sum up over all MC iterations %/

temp[0] = temp[0] + Pb_lc[j1[il; /* linear correlator */
temp[1] = temp[1] + Pb_wc[jI1[il;
temp[2] = temp[2] + Pb_lo[jl1[il;

+

¥

temp[3] = temp[3] + Pb_lw[jI[il;
temp[4] = temp[4] + Pb_ar[jI[il;

3
useinput_ = 1; /* Perform in-place */
temp = vscale (temp, 5, 1.0 / it); /* Average over MC #/
useinput_ = 0; /* Reset */
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viree

}
(temp) ;

Pb_lc_avgl[i]l = templ[0];
Pb_we_avgl[i] = templ[i];
Pb_lo_avgl[i]l = templ[2];
Pb_lu_avglil = templ3];
Pb_ar_avgli] = temp[4];

/*

Clean up */

[xxxxxxxxx%x% Save to disk Plerr] info sksss¥xxxxsk*/
// For sundevil

gy g

\\documents\\research\\conversion\\results\\snr_vals_.txt",

fopen ("x:\\documents\\research\\conversion\\results\\pblc.txt", "w");

fopen ("x:\\documents\\research\\conversion\\results\\pbwc.txt", "w");

:\\documents\\research\\conversion\\results\\pblo.txt", "w");

\\documents\\research\\conversion\\results\\pblw.txt", "w");

fopen ("x:\\documents\\research\\conversion\\results\\pbar.txt", "w");

snr_vals = fopen ("c:\\temp\\mike\\results\\snr_vals_.txt", "u");

Pblc = fopen ("c:\\temp\\mike\\results\\pblc.txt", "
fopen ("c:\\temp\\mike\\results\\pbwc.txt", *
Pblo = fopen ("c:\\temp\\mike\\results\\pblo.txt", "
fopen ("c:\\temp\\mike\\results\\pblw.txt", *
fopen ("c:\\temp\\mike\\results\\pbar.txt", "w");

3 i++)

fprintf (snr_vals, "%i\n", Eb_min + i); /* Save snr vector */

if (where_running == 1)
1{
snr_vals =
fopen ("
Pblc =
Pbuc =
Pblo =
fopen ("
Pblw =
fopen ("
Pbar =
}
// For L90
if (where_running == 2)
Pbuc
Pblw =
Pbar
}
for (i = 0; i < (Eb_max - Eb_min + 1)
{
fprintf (Pblc, "%f\n"
fprintf (Pbwc, "%f\n"
fprintf (Pblo, "%f\n"
fprintf (Pblw, "%f\n
fprintf (Pbar, "%f\n",
}
/* Clean house */
fclose (Pble);
fclose (Pbwc);
fclose (Pblo);
fclose (Pblw);
fclose (Pbar);
fclose (snr_vals);
mathfree ();

A.2.2 AR Histo.c

/* AR_his

R R

*/
#include
#include
#include
#include
#include
#include

to.c

derivative of the pdf, to

<stdlib.
<stdio.h:
<math.h>
"mathlib
"sim_par:
"sim_par

by Mike Banys
March 3, 2001

h>
>

"
ameters.h"
ameters_extern.h"

Pb_lc_avg[il);
Pb_wc_avg[il);
Pb_lo_avg[il);
Pb_lu_avg[il);
Pb_ar_avg[il);

/* linear correlator */

This estimates the pdf of a white noise sequence that drives a P-th
order auto-regressive filter model. It returns the vector function
h() which is not the pdf, but rather the natural log of the

be used to the LO non-linear processor.

voidar_histo (Real_Vector stimulus, unsigned stimulus_length, Real_Vector a,

int i,
unsign

s
ed N3

unsig;

ned a_length,

Real_Vector h, Real_Vector bin_width, Real_Vector mini)
/* bin_width & mini are vectors to enable pass-by-reference */

/* counter variable */
/* samples for histogram */

Real_Vector white, filter_a_variable, /* used for sending -1 into filter() */

pdf,
bp,
neg_:

L

white = valloc (NULL, stimulus_length);
if (a_length == 1)
veopy (white, stimulus, stimulus_length);

else

/% pdf of white noise (frequency count of histogram) */
/* histogram bin centers */
/* Temporary variable to hold -a */

/* using ARLO #/
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/* using filtered LO */

filter_a_variable = valloc (NULL, 1);

filter_a_variable[0] = 1;

neg_a = vscale (a, a_length, -1.0);

filter (neg_a, a_length, filter_a_variable, 1, stimulus,
stimulus_length, white);

viree (neg_a);

/% Build the pdf estimate via the histogram with K bins #/
N = Nb % Bh; /% samples calculated for this histogram */
pdf = valloc (NULL, K);
bp = valloc (NULL, K);

hist (white, stimulus_length, K, pdf, bp); /% Compute histogram estimate of white noise */
for (i = 03 i < K; i++) /* Find possible negative values or zeros */
if (*(pdf + i) <= 0.0) /* set them equal to 1.0 for calculation of g */

*(pdf + i) = 1.0;

bin_width[0] = (Real) * (bp + 1) - *bp; /* Width of each equi-spaced bin, typecasted to Real */
minil0] = vminval (white, stimulus_length, &i); /* Minimum value in the histogram */

useinput_ = 1; /% overwrite pdf[] with scaled pdf[] */

pdf = vscale (pdf, K, (1 / (*bin_width * N))); /* scale histogram so that pdf integrates to 1 */
useinput_ = 03 /* reset x/

/% The "h" function is the derivative of the 1n of the pdf of the white noise sequence */
#h = (1.0 / *bin_width) * (log (*(pdf + 1)) - log (*pdf));
for (i =1; i <K - 1; i++)
*(h + i) =
(0.5 / *bin_width) * (log (x(pdf + i + 1)) - log (*(pdf + i - 1)));
*(h + K - 1) =
(1.0 / #bin_width) * (log (*(pdf + K - 1)) - log (*(pdf + K - 2)));
#(h + K) = 0.0; /* For received values outside support of h (a junkbin) */
/% Clean House */
vfree (filter_a_variable);
vfree (pdf);
vfree (bp);
vfree (white);

A.2.3 AR _ Theory.c

/*AR Theory

* by Fernando Martinez Vallina

*

* Calculates the pdf of a white noise sequence that drives the P-th
* auto-regressive filter model. Returns a function h() that is the
* natural log of the derivative of the pdf.

*

*

* Inputs: K - Number of data points

* T - Support of the pdf

* iidtype - Type of the white noise pdf

* iidparms - Parameters of the pdf

* ISR - Interferer to Signal Ratio (dB)

*

* Outputs: h - d/d(rho) of 1n(fw())

*

*

* This is based on the original AR Theory code in MATLAB

*/
#include <math.h>
#include <stdlib.h>
#include "mathlib.h"
#include "sim_parameters.h"
#include "sim_parameters_extern.h"
void
ar_theory (int iidparms[], char iidtype[], int ISR, Real K,
Real T, Real_Vector h)

{
Real xstep, xmax, sigl, power;
int length, i; //length is the length of the sequence, i is a counting variable
Real_Vector x, mu, sig;
power = pow (10, (ISR / 10));

length = T / xstep;

x = valloc (NULL, length);

x[0] = -xmax;

for (i = 13 i <= length; i++)
1{

x[i] = x[i - 1] + xstep;

h = valloc (NULL, length);
if (iidtype == ’gs’)

mu = valloc (NULL, length);
for (i = 0; i < lenmgth; i++)
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muli] = iidparms[1];

sig = valloc (NULL, length);
for (i = 0; i < length; i++)
{

sigli] = iidparms[2];
for (i = 0; i < length; i++)
n[i] = -(x[i] - mu[i]) / (power * sig[i] * sig[il);

}
if (iidtype

}
viree (x);
viree (mu);
viree (sig);

A.2.4 Contwave.c

/* interferer must be initialized to zero (or contain values from
another interference type) before calling this function
*/

#include <math.h>

#include <stdlib.h>

#include <stdio.h>

#include "mathlib.h"

#include "sim_parameters_extern.h"
void

contwave (Real_Vector interferer)

Real amp, /* Individual interferer amplitude */

delta_t; /* time interval */
int i, intf; /* counter */
Real_Vector time, /* Time sequence */
phase; /* phase of each interferer */
double pi = 3.1415926535;
amp = sqrt (2 * pow (10, ISR / 10) / I); /* Individual interferer amplitudes */
phase = valloc (NULL, I);
for (i = 0; i < I; i++) /% Set each interferer’s phase to 0 */

*(phase + i) = 0;
delta_t = (Real) 1.0 / Ntot; /% Time interval */
time = valloc (NULL, Ntot); /* Time sequence */
for (i = 0; i < Ntot; i++)
*(time + i) = delta_t * i;
for (intf = 0; intf < I; intf++) /* Create sinusoid interferer */

{
for (i = 0; i < Ntot; i++)
*(interferer + i) =
*(interferer + i) +
(amp * sin (2 * pi * freq[intf] * time[i] + phasel[intfl));
}
viree (time);
viree (phase);

A.2.5 Conv.c

/* Convolution Function
by Michael Banys
conv(vi, lengthi, v2, length2, output)
Inputs: vl = Vector 1
v2 = Vector 2
lengthi = length(vi)
length2 = length(v2)
Outputs: output = convolution of veci with vec2
"The resulting vector is output_length=lengthi+length2-1.
If vi and v2 are vectors of polynomial coefficients, convolving

them is equivalent to multiplying the two polynomials."

This is based on MATLAB’s conv function.

F R K X K K X K K X K K X K K X X %
~

#include <stdlib.h>
#include "mathlib.h"
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#include "sim_parameters_extern.h"
voidconv (Real_Vector vi, int lengthi, Real_Vector v2,
int length2, Real_Vector output)
1{
/* Use same format as filter() for this operation.
* conv(a,b) is the same as conv(b,a), but we can make

it

* go substantially faster if we swap arguments to make the first

* argument the shorter of the two.
*/
int i,

filter_order,

filter_iteration,

element_num,

first_length,

second_length;
Real_Vector v_alt,

*first_v,

*gecond_v,

filter_delay;
Real sumx,

sumy;

if (lengthl > length2)

if (length2 > 1)

{
v_alt = valloc (NULL, (lengthl + length2 - 1));
for (i = 0; i < lemgthl; i++)
*(v_alt + 1) = *(vi + i);
for (i; i < (lengthi + length2 - 1); i++)
*(v_alt + i) = 0;
3

first_v = &v2;

second_v = &v_alt;
first_length = length2;
second_length = lengtht;

else
if (lengthi > 1)
{

v_alt =
for (i = 0; i < length2; i++)
*(v_alt + i) = *(v2 + i);
for (i; i < (lengthl + length2 -
*(v_alt + i) = 0;
}
first_v = &vi;
second_v = &v_alt;
first_length = lengthi;
second_length = length2;

valloc (NULL, (lengthl + length2 - 1));

/* Counter variable */
/% Order of numerator */

/* Variable tracking loop through input data */

/* Variable indicating current coefficient and delay
being processed */
/* Length of vector that is first into conv */

/* Length of vector that is used as data_in */
/* Temp vector for zero-padding vi or v2 */

/* Pointer for first argument into convolution,
as explained below. May be assigned to vi or v2 */
/% as above */
/* Filter delay values */
/* Temporary variable representing sum of elements of all
multiplied by elements of filter_delay[l x/
/* Temporary variable reperesenting sum of elements of b[]
multiplied by elements of filter_delay[] */

/* For zero-padding vi */
/* Copy vi into v_alt */

/* Zero pad rest of v_alt */

/* v2 will be first vector into the conv operation */

/* For zero-padding v2 */
/* Copy v2 into v_alt */
1)5 i++)

/* Zero pad rest of v_alt */

/* vi will be first vector into the conv operation */

#include
#include
#include
#include

decision

/* Begin actual convolution using Direct Form II structure, as in filter() */
filter_delay = valloc (NULL, first_length);
filter_order = first_length; /* Set order of numerator */
for (i = 0; i < first_length; i++)
*(filter_delay + i) = 03

/* Allocate memory for filter_delay length */

/* Set wlnl delay array, filter_delay, to all zeros */

for (filter_iteration = 0; filter_iteration < (first_length + second_length - 1); filter_iteration++) /x Start Filtering */

sumx = sumy = 0.0; /* Initialize variables */

/* Can SKIP summing left side, as there are no denominator coefficients */

/% Sum right side of Direct Form II Structure */
for (element_num = 1; element_num < first_length; element_num++)

sumy = sumy + (*(*first_v + element_num) * filter_delay[element_num]);

/* Compute current filter delay (filter_delay[0]) */

*filter_delay = *(*second_v + filter_iteration) + sumx;

/* Compute output element, y(n) (y[filter_iteration]) */

output[filter_iteration] = *(*first_v) * filter_delay[0] + sumy;

/* Delay each filter_delay[] element by one */

for (element_num =
filter_delay[element_num] = filter_delay[element_num - 1];

viree (filter_delay);
viree (v_alt);

A.2.6 Decision.c

<stdlib.h>

<math.h>

"mathlib.h"

"sin_parameters_extern.h"

void

(Real_Vector pn, Real_Vector g, Real_Vector dec
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int i, j, k; /% Counter */
Real corr; /% Correlation of pn sequence with g */
for (1 =0, k = 0; i < Ntot; i = i + Nb, k++)

1{
for (j = 0, corr = 0.0; j < Nb; j++) /* Correlate each symbol with pn and SUM each correlation */
corr = corr + (pn[i + j1 * gli + j1);
if (corr <= 0)
*x(dec + k) = -1;
else
*(dec + k) = 1;
}

A.2.7 DSSS.c

#include <time.h>
#include <stdlib.h>

#include "mathlib.h"

#include "sim_parameters_extern.h"

voiddsss (Real_Vector ref, int amp, Real_Vector coded_data, Real_Vector chips)

unsigned int i, /* temp var %/

is /* temp var */

k3
Real_Vector data, tmp;
long ltime; /* For random seed */
data = valloc (NULL, Ntot); /* Sample each symbol Nb times (Nb samples per symbol) */
for (i =0, k = 0; i < Ntot; i = i + Nb, k++) /* compute data vector */

{

for (j = 0; j < Nb; j++)
*(data + i + j) = *(ref + k)3
}
tmp = valloc (NULL, B * PG);
ltime = time (NULL);
srand ((unsigned) ltime / 2);
for (i = 03 i < B * PG; i++) /* Create PN chipping sequence */

#(tmp + i) = (2 * (Real) rand () / RAND_MAX) - 1.0; /* PN sequence B*PG chips long */
if (x(tmp + i) < 0) /* Random chips at 1 sample per chip */
*(tmp + i) = -1.0;
else if (x(tmp + i) > 0)
*(tmp + i) = 1.0;
else
*(tmp + i) = 0.0;

}
for (i = 0, k = 0; i < Ntot; i = i + Ne, k++) /* Sample each chip Nc times */
{
for (j = 0; j < Nej j++)
*(chips + i + j) = *(tmp + k);
}
for (i = 03 i < Ntot; i++) /* The sampled signal modulated by the PN sequence */

*(coded_data + i) = amp * (*(chips + 1)) * (x(data + i));
viree (data);
viree (tmp);

A.2.8 FFTShift.c

/* FFTSHIFT.c

*

* Swaps the left and right halves of the input vector, placing the DC
* component in the middle of the spectrum.

*ie. a=1[01234] -> [3 401 2]
*ie a=[012345]-> [34a5012]

*

* v1 = input complex vector

* lengthl = length of complex vector

*

* by Michael Banys

* February 7, 2000

*/

#include <stdlib.h>

#include <math.h>

#include "mathlib.h"

#include "sim_parameters_extern.h"

voidfftshift (Complex_Vector vi, unsigned int lengthi)
1{

unsigned int k, /* counter */
j, midpoint; /* Middle of vi %/
Complex tempi, /* temp Storage */
temp2;

midpoint = (unsigned int) ceil ((double) lengthi / 2) - 1;  /# Find midpoint of vi x/
/* if lengthi is odd, this finds exact midpoint.

o7



* if lengthi is even, this find the lesser of the two midpoints */
if (fmod ((double) lengthi, 2.0)) /* If vl contains ODD number of elements */
{

temp2.r = vilmidpoint].r;

temp2.i = vilmidpoint].i;
for (k = midpoint, j = (lengthi - 1); k >= 1; k--, j--) /* Iterate from midpoint to zero */
{
tempi.r = vi[jl.r; /* Save first storage location */
tempi.i = vi[jl.i;
vi[jl.r = temp2.r; /* Move a value */
vi[jl.i = temp2.i;
temp2.r = vilk - 1].r; /* Save second storage location */
temp2.i = vi[k - 1].i;
vilk - 1].r = tempi.r; /* Move a value */
vilk - 1].i = templ.ij;
}

vi[midpoint].r = temp2.r;
vi[midpoint].i = temp2.i;

else
/% If vi contains EVEN number of elements */

for (k = midpoint, j = (lengthi - 1); k > 0; k--, j--)
{

tempi.r = vi[jl.r; /* Save value */
vi[jl.i;
= vik]l.r; /* Store value */
vi[k].ij
templ.r; /* Store value */
= templ.ij;
3
temp1. /* Save value */
tempi. i
vi[jl. /* Store value */
vi[jl.i
vi[k]. /* Store value */
vi[k].i

A.2.9 Filter.c

/* filter.c
* Version 2.0, 5/1/01
Written by Michael Banys & Angela Kaczmarski

Revision Control:
2.0 Changed to allow a denominator of 1
1.0 Original version

* ox o % %

*
*/

/* OUTPUT = filter( b[M], M, a[N], N, data_in[input_length], input_length, y[] )

b[M] = coefficients of numerator of impulse response

a[N] = coefficients of denominator of impulse response
= order of filter

This function computes the convolution

of vector "data_in" with the causal filter
whose time-domain filter coefficients

are of the following format:

a(1)*y(n) = -SUM(k=1,N) [ a(k)*y(n-k) ]
+SUM(k=0,H) [ b(k)*x(n-k) ]

If a(0) != 1, FILTER will normalize the filter
coefficients by a(0). If a(0)==0, return ERROR.

P E

*/
#include <stdlib.h>
#include "mathlib.h"
#define ORDER_ERROR “Filter numerator order is greater than demominator order\n"
voidfilter (Real_Vector b, int M,
Real_Vector a, int N,
Real_Vector data_in, int input_length, Real_Vector y)

{
int filter_order, /* Order of acting filter */
filter_iteration = /% Variable tracking loop through input data */
element_num, /% Variable indicating current coefficient and delay being
processed */
i=0; /* Iteration variable */
Real normalization_value, /* a[0] coefficient value */
sumx, /* Temporary variable representing sum of elements of a[]
multiplied by elements of filter_delay[]
sumy; /* Temporary variable reperesenting sum of elements of b[]
multiplied by elements of filter_delay[]
Real_Vector filter_delay; /* Filter delay values */
if (N >= M) // added

58



filter_delay = valloc (NULL, N); /* Allocate memory for filter_delay lemgth */
filter_order = N; /* Set order of filter */

}

else // added

1{
filter_delay = valloc (NULL, M); /* Allocate memory for filter_delay length *///added
filter_order = M; /* Set order of filter */// added

}

/* Check to see if the length of b[] < length of a[]
If length b[] >= length a[l, output error message and exit function */
if ((M>=N) & (N !=1)) // added (N!=1)
printf (ORDER_ERROR);
/* Check to see if denominator of IR is mormalized (i.e. does a[0]=1
If denominator is not normalized, normalize IR by a[0] */
if (a[o0] = 1)
{
normalization_value = a[0];
/* Normalize denominator #*/
for (i = 0; 1 < N; i++)
alil = alil / normalization_value;
/* Normalize numerator */
for (i = 0; 1 < M; i++)
b[i]l = b[i] / normalization_value;

/* Set w[n] delay array, filter_delay[], to all zeroes */
for (i = 0; i < filter_order; i++) // changed N to filter_order
filter_delay[i] = 0;
/* Start filtering process */
for (filter_iteration = 0; filter_iteration < input_length;
filter_iterationt++)

sumx = sumy = 0.0; /* Initialize variables */
/* Sum left side of Direct Form II Structure */
for (element_num = 1; element_num < N; element_num++)
sumx = sumx - alelement_num] * filter_delay[element_num];
/* Sum right side of Direct Form II Structure */
for (element_num = 1; element_num < M; element_num++)
sumy = sumy + b[element_num] * filter_delay[element_num];
/* Compute current filter delay (filter_delay[0]) */
filter_delay[0] = data_in[filter_iteration] + sumx;
/* Compute output element, y(n) (y[filter_iteration]) */
y[filter_iteration] = b[0] * filter_delay[0] + sumy;
/% Delay each filter_delay[] element by one */
for (element_num = filter_order - 1; element_num > 0; element_num--)
filter_delay[element_num] = filter_delay[element_num - 1];
}
vfree (filter_delay);

A.2.10 FlipLR.c

/***This is the C version of the Matlab Fliplr() functionxxx

*xxuritten by Tayo Ihimoyan, 04/2000%xxx**/

#include "cmt.h"

#include "mathlib.h"

/% */
Real_Matrix

fliplr (Real_Matrix M, unsigned m, unsigned n)

{

/*

£1iplr() returns a m-by-n matrix M whose elements
are taken from M(m-by-n) with columns flipped in the left-right direction,
that is, about a vertical axis

On exit, the output matrix M[][] is the value of this routine.
*/
/% */
unsigned i, j, k;
Real 1;
if (M == NULL)
{

matherr_ (“fliplr", E_NULLPTR);
return NULL;

if (n % 2 == 0)
k=n/2;
else
=(-1) /2

X
0.05
for (i = 03 i < k; i++)
{
for (j = 03 j < m3 j++)
1 = M[j1[i];

M[j104] = M[j10n - 1 - il;
M[jln - 1 - i1 =13
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}

return M;

A.2.11 FlipUD.c

/***This is the C version of the Matlab Flipud() functionkxkx
***uritten by Tayo Ihimoyan, 04/2000%kk*x*/

#include "cmt.h"
#include "mathlib.h"
/* */

Real_Matrix flipud (Real_Matrix M, unsigned m, unsigned n)

/%

flipud() returns a m-by-n matrix M whose elements
are taken from M(m-by-n) with rows flipped in the up-down directionm,
that is, about a horizontal axis

On exit, the output matrix M[J[] is the value of this routine.
*/
/% */
unsigned i, j, k;
Real 1;
if (M == NULL)
1{

matherr_ ("flipud", E_NULLPTR);
return NULL;

if (m% 2 ==0)

k=m/ 2;
else
k=(m-1)/2;
1=20;
for (i =03 i < k; i++)
1{
for (j = 0; j < n; j++)
{
1 = M[il[j1;
M[i1[3] = MIm - 1 - i1[j1;
Mm - 1 - i][3] = 1;
¥
}
return M;

A.2.12 Hist.c

/* hist_mike.c
* Version 1.0, 6/29/2001

* Written by Michael Banys

* Revision Control:

*

*

*

*

* hist( Real_Vector signal, int nbins, Real_Vector freq, Real_Vector bincenter )
*

* freq = vector containing frequency distribution of each bin
* bincenter = vector containing center location of each bin

*

* signal = signal (vector) from which to compute histogram
* nbins = number of bins necessary for histogram

*

*

* The histogram function bins the elements of signal into the number of bins specified by
* nbins. The function returns the number of elements in each bin and the center point
* of each bin.
*/
#include "mathlib.h"
#include <stdio.h>
#include <stdlib.h>
voidhist (Real_Vector signal, unsigned signal_length,
unsigned nbins, Real_Vector freq, Real_Vector bincenter)

1{
int j, /* Counter variables */
binfound, /* 0 if data not distributed into a bin; 1 if it is */
currentbin; /* current bin being examined */

Real min_signal, max_signal, binwidth;
unsigned temp;
min_signal = vminval (signal, signal_length, &temp); /* Find min(signal) =/
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max_signal = vmaxval (signal, signal_length, &temp);

binwidth = (max_signal - min_signal) / nbins; /* Calculate bin width */

bincenter[0] = min_signal + 0.499999 * binwidth;

/* use 0.499999 to properly sort min(signal) into first bin */

for (j = 15 j < nbins; j++)

*(bincenter + j) = *(bincenter + j - 1) + binwidth;
*(freq + j) = 0.0;

freq0] = 0.0;

for (j = 0; j < signal_length; j++)
1{

binfound = 0
currentbin = 0;

if (x(signal + j) > (bincenter[nbins - 1] + 0.5 * binwidth))

/* Find max(signal) */

/* Center of first bin */

/* Find centers of rest of bins */

/* Initialize frequency vector to zero */

/* complete initialization of frequency vector to zero */

/* Distribute signal[] into bins */

/* reset binfound? variable */

freqlnbins - 1] = freqlnbins - 1] + 1;

binfound

while (binfound ==

0)

/* if max(signal) falls outside of bin */

if ((x(signal + j) > (bincenter[currentbin] - 0.5 * binwidth)) &&
(x(signal + j) <= (bincenter[currentbin] + 0.5 * binwidth)))

3
currentbi:
3
}
freqlnbins - 1] = freq[nbins - 1.

A.2.13 Modcov.c

/* Inputs:
N = length(x)
P = model order

'’EEE

error = return to caller
*/

#include "mathlib.h"

#include <stdlib.h>

#include

#include "sim_parameters_extern.h"

voidmodcov (Real_Vector x, unsigned

"sim_parameters.h"

freqlcurrentbin] = freqlcurrentbin] + 1;
binfound = 1;

Dt

1413

/* place signal data into current bin */

/* Adjusted first bincenter causes max(signal)
not to be sorted into last bin.

So add this

signal value into last bin manually. */

ARparm = AR parameter vector to return to caller

N, unsigned p,

Real_Vector ARparm, Real error)

{
int i, j;
Real_Matrix X,
R,
R1i, R2;
Real_Vector bi,
b2, b_temp;
b1l = valloc (NULL,
b2 = valloc (NULL,
for (i=p, j =p;
{

(N - p))s;
p+1);

i < N; i++, j--)

/* Toeplitz matrix of x */
/* temp storage matrix for flipud/lr */

/* temp storage vectors */

*(b1 + (i - p)) = x[il;

if (j >=0)

*(b2 + (i - p)) = x[jl;

}

X = toeplitz (b1, b2, (N - p), (p + 1))

R = mxmull (X, X, p+ 1, N - p, p + 1);

vfree (b1);
vfree (b2);
R1 = mxalloc (NULL, p, p);
for (i = 13 i < p + 1; i++)
for (j = 1;
Ri[i - 11[j - 11 =
R2 = mxalloc (NULL, p, p);
for (i = 03 i < p; i++)
for (j = 0; j < p; j++)
R2[i1[j]1 = R[i1[3];
(R2, p, p);
(R2, p, p);

R2 = fliplr

R2 = flipud

bi = valloc (NULL, p);

for (i =13 1 < p+ 1; i++)
*(b1 + i - 1) = R[il[0];

b2 = valloc (NULL, p);

for (i = 03 i < p; i++)
*(b2 + i) = R[p - (
}

ARparm[0] = -13
b_temp = vmxmul (mxinv (mxadd (Ri

/% Clean house */

/* forward predictor-error matrix */

j<p+1; )

R[i1[51;

/* Backward predictor-error matrix */

/* Forware error coefficients */

/* Copy vectors for use in Toeplitz */

/* Generate the matrix of normal equations */

/* Backward predictor-error coefficients */

i+ 1)1[pl;

/* AR Coefficients */

» R2, p, P), P), vadd (b1, b2, P), P, P);
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for (i =13 i < p + 1; i++)
ARparm[i] = *(b_temp + (i - 1));
mxfree (R1);
mxfree (R2);
viree (b_temp);
vfree (b1);
viree (b2); /* clean house */
bi = valloc (NULL, p + 1); /* Begin Error calculation *//*R(1,:) */
b2 = valloc (NULL, p + 1); /% R(p+1,:) =/
for (i = 03 1 < p + 1; i++)

*(b1 + i) = R[0][i]; /% R(1,:) */
v2[p - il = R[p1[il; /* £1liplr( R(pt1,:) ) */
}
error = vdot (b1, ARparm, p + 1) + vdot (b2, ARparm, p + 1);
viree (b1);
viree (b2);
mxfree (X);
mxfree (R); /* clean house */

A.2.14 NLP.c

#include <stdlib.h>

#include "mathlib.h"

#include <math.h>

#include "sim_parameters_extern.h"

Real_Vector

nlp (Real_Vector r, unsigned int r_length, Real_Vector mini, Real_Vector h,
unsigned int h_length, Real_Vector bw, Real_Vector a,
unsigned int a_length, unsigned int g_length)

int i, j, ks

Real_Matrix hargs, /* arguments for the function */
hindx, /* for indexes of h function */
tempmat ; /* temp matrix */
Real_Vector rho, rho_1, rho_2, /* temp usage for hargs */
hargCol, /* hargs column: temporary */
8> /* vector to return to simulation.c */
a_scaled; /* Test */
const Real inf = 30000000, /* Represents inf in matlab */
isinf = 100000; /* Min value for "essentially inf" response */
Real num; /* temporary storage */
g = valloc (NULL, g_length); /* allocate vector */
rho = valloc (NULL, 2 * P + r_length); /* Concatenate initial conditions & rho */
for (i = 03 i < P; it++)
{
rho[i] = 0.0; /* Initial Values of zero */
rho[i + P + r_lenmgth] = inf; /* Fixes the indexing in the nonlinearity

(forces rhp(i>Nb) = Inf (which is outside
the support of the pdf and hence h() = O!! */
}
for (i = P; i < P + r_length; i++)
rhol[i] = r[i - P];
hargs = mxalloc (NULL, P + 1, Nb); /* Initialize the args for "h" function */
//tempmat = mxalloc(NULL, P+1, P+1); // allocated within Toeplitz.c
rho_1 = valloc (NULL, P + 1);
rho_2 = valloc (NULL, P + 1);
a_scaled = valloc (NULL, a_length);
a_scaled = vscale (a, a_length, -1.0);
for (i = 03 i < Nbj; i++)

for (j =0,k =i+ P; j <P+ 1; j++) /* Allocate rho(indx+P:indx+2P) #/

1 /* and rho(indx+P:-1:indx) */
rho_1[j] = rho[i + P + jI;
rho_2[j] = rholk - j1;
3
tempmat = toeplitz (rho_1, rho_2, P + 1, P + 1); /* Get toeplitz */
hargCol = vmxmul (tempmat, a_scaled, P + 1, P + 1);
for (j = 0; j <P + 15 j++) /% Copy hargcol into appropriate hargs column */

hargs[j1[i] = hargCol[il;

mxfree (tempmat);

vfree (hargCol);

/* Now that we have the arguments (a matrix), we want to make use of the
histogram estimate of the pdf (actually the derivative of the natural log of
the pdf). So we take the "hargs" matrix and change it to INDEXES of the
“h" function, utilizing the structure of the pdf (the lowest terms are on the
left side of the histogram).

This routine uses the trick of assuming the minimum values in the histogram
(mini) is located in the first bin, and then we use the combination of the
breakpoint information and the floor command to develop an integer that
puts the value of "hargs" in the correct bin. %/

tempmat = mxalloc (NULL, P + 1, Nb); /* Allocate matrix of ones */

mxinit (tempmat, P + 1, Nb, 1.0);

hindx = mxsub (hargs, mxscale (tempmat, P + 1, Nb, *mini), P + 1, Nb);

useinput_ = 1; /* overurite input matrix */
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mxscale (hindx, P + 1, Nb, (1.0 / bw[01));

/* floor( hindx )

hindx =
for (i = 0; i <P + 15 i++)
for (j = 0; j < Nb; j++)
hindx[i1[j] = floor (hindx[il[j1);
hindx =

for (i = 0; i < P + 1; i++)
for (j = 0; j < Nb; j++)
{
hindx[i][j] =
}

mxadd (hindx, tempmat, P + 1, Nb);
useinput_ = 0;
nxfree (hargs);
nxfree (tempmat);
/* Find arguments that lie outside the support of the "h" function and throw
those values into a "junk" bin (assume their probability is approx. zero */
/* Apply "junk" to junkbin %/

*/

/* do not overwrite anymore (DEFAULT) */

// printf("1 ");

// printf("2\n");

if ((hindx[i1[j] < 1.0) || (hindx[il[j] > (h_length - 1)))

* *** Develop non-lineari
/ Develop 1i ity
The following reshaping makes h(hindx) appear in the correct format

We want P+1 rows of length Nb, where the arguments for "h" in each row

are a linear combination of P+1 samples of the rho vector.

(Real) h_length;

Each row is a

shifted version to accomplish the necessary summations for g(rho) */

/* h(hindx) */

tempmat[11[j] = h[(int) (hindx[il[j] - 1];

tempmat = mxalloc (NULL, P + 1, Nb);
for (1 = 0; i < P + 1; i++)
for (j = 0; j < Nb; j++)
}
hargs = mxalloc (NULL, Nb, P + 1);
hargs = mxtransp (tempmat, P + 1, Nb);

mxfree (hindx);
mxalloc (NULL, P + 1, Nb);

mxtransp (hargs, Nb, P + 1);

/* Perform a*reshape(h(hindx’),Nb,P+1)’; */

hindx
hindx

for (j = 0; j < Nbj j++)
num = 0.0;
for (i = 0;
num
*(g + j) = num;
}

i <P+ 13 i++)
num + (x(a + i) * hindx[il[j1);

/* Multiply over each column */

/* temp matrix for reshaping */
/* h(hindx?) */

/* Initialize num to zero */

/* Do each row by col multiplication */

mxfree (hindx);
mxfree (tempmat);
mxfree (hargs);

viree (rho);
vfree (rho_1);
vfree (rho_2);
return g;

A.2.15 Read Parms.c

/* This function reads in the simulation parameters from a file
designated on the command line.

#include
#include
#include
#include
#include

R

*

The file should have one parameter per line, in this format:

<value> <variable>
For example, 512 G_b

The order of the variables should be as follows:

ar_method(4), iidtype(2), Itype(2), 1limit(4), Bh, Eb_max,
Eb_min, I, iidparms[2], ISR, it, K, L, Nc, P, PG, sigmat,
T, z, freq[2], poly[2]

/

<stdio.h>
<math.h>
<stdlib.h>
"mathlib.h"

“sim_parameters_.

extern.h"

intread_parms (char *filename)

{

int i, k,
L1,
numline,
space,
char_variables
int_variables =

4,
16,
numcommands = 24,

maxlength = 20;
char commands [24][20];

float j;

FILE *parms;

Real_Vector poly_temp,

Complex initval = {
0, 0

¥

if ((parms = fopen (filename, "r")) ==

poly_temp2;

NULL)

/* Count

/* Max length of

/%
/%
er
/%

26 variable assignments */

a line */

22 variable assignments, each

/* temp storage */

Counter variables */

Lengths for recursive poly[]l */

for current line being processed */
Location of space in line */

number of variables that are char arrays */

number of variables that are ints */

* max length 19 chars + 1 for NULL */

/* For opening parameter file */
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printf ("Cannot open parameter file.\n");
exit (1);

for (i = 0; i < numcommands; i++) /% Read each line into array */
fgets (commands[il, (maxlength - 1), parms);
/* Input character arrays first */

0; numline < char_variables; numline++)

space = 0; /% Find SPACE character */
for (i = 0; i < maxlength; i++)
{
if (commands[numline][i] == > *)
{
space = i
break;
}

/* Assign string to defined character variables */
switch (numline)
1
case 0:
for (i = 0; i < space; i++)
ar_method[i] = commands[numline][il;
break;
case 1:
for (i = 0; i < space; i++)
iidtype[i] = commands[numline][il;
break;
case 2:
for (i = 0; i < space; i++)
Itype[il = commands[numline][il;
break;
case 3:
for (i = 0; i < space; i++)
limit[i] = commands[numline] [i];
break;

}

/* Read in Integer variables */

(numline < (char_variables + int_variables)); numline++)

i = atoi (commands[numlinel); /* Convert char number to int */
/* Assign int to correct variable */
switch (numline)

case (4):
Bh = i
break;
case (5):
Eb_max = i;
break;
case (6):
Eb_min = i;
break;
case (7):
I=1i;
break;
case (8):
iidparms[0] = i;
break;
case (9):
iidparms[1] = i;
break;
case (10):
ISR = i;
break;
case (11):
it = i;
break;
case (12):
K =1i;
break;
case (13):

case (14):

case (15):

case (16):

case (17):
case (18):

case (19):
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z = 1i;
break;
¥
}
/* Read in float variables */
for (numline; numline < numcommands; numline++)
1{
j = (float) atof (commands[numlinel); /* Convert char number to float */
/* Assign float to correct variable */
switch (numline)
{
case (20):
freq[0]
freq[0] = z * Bh * Nc;
break;
case (21):
freq[1] = j; /* should be calculated, not input */
freq[1] = z * Bh * Nc * 0.3;
break;
case (22):
polynomiall0] = j;
break; /% If polynomial length > 2, change */
case (23): /* the recursive algorithm below */
polynomiallil = j;
break; /* as needed. */

/* should be calculated, not input */

}
7
/* Finish Global Assignments */

/* Spread spectrum parameters */

Nb = PG * Ne;

B =2z * Bh;

Ntot = B * Nb;

/* AR Model Parameters */

Bar = Bh / 64;

Bg = Bh;

/* Signal parameters & Thermal noise */

sigmat2 = pow (sigmat, 2);

Eb_sigma = valloc (NULL, (Eb_max - Eb_min + 1));
for (i = 0; i < (Eb_max - Eb_min + 1); i++)
{
j = (double) (Eb_min + i) / 10.0;
Eb_sigma[i] = (Real) pow (10.0, j);
}

/* Mixed jammer x/
ISRew = ISRpb = ISR / 2;
/* Create poly via recursively increasing the order of the filter to 2°L #/
L1 = 2; /* Set length of polynomial vector */
poly_temp2 = valloc (NULL, (L1 + L1 - 1));
poly_temp2[0] = polynomiall[0];
poly_temp2[1] = polynomiall1l;
for (i = 03 i < Lj i++)
{
poly_temp = valloc (NULL, (L1 + Li - 1));
conv (poly_temp2, L1, poly_temp2, L1, poly_temp); /* poly_temp = conv(.) */
viree (poly_temp2);
poly_temp2 = valloc (NULL, L1 + L1 - 1);

vcopy (poly_temp2, poly_temp, L1 + L1 - 1); /* Copy poly_temp to poly_temp2 */
vfree (poly_temp);
1=1L1+L1-1; /* Set to new length */

vfree (poly_temp2);

poly = valloc (NULL, L1); /* Create global vector */

vcopy (poly, poly_temp2, L1i);

a_t = valloc (NULL, L1);

veopy (a_t, poly, L1);

useinput_ = 1;

vscale (a_t, L1, -1.0);

useinput_ = 0

if (Itype[0] == ’p’ && Itype[i] == ’b?) /* Is using PB interferer, P = number */
P=1L1-1; /% of coefficients */

/* End Global Assignments */

/ /

fclose (parms);

return 1;

A.2.16 Receiver.c

#include <math.h>
#include <stdlib.h>
#include "mathlib.h"
#include "sim_parameters_extern.h"
void
receiver (Real_Vector signal, Real_Vector noise, char *limit,
Real_Vector rcvd_tr)
{

int i; /% Counter */
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for (i = 03 i < Ntot; i++)
*(revd_tr + i) = *(signal + i) + *(noise + i);
if (limit[0] == °h?) /% If limiter is a HARD LIMITER */
{ /% aka NOISE BLANKER */
for (i = 0; i < Ntot; i++)

if ((x(revd_tr + i) > T) || (*(rcvd_tr + i) < -T))
*(rcvd_tr + i) = 0;

3
}
else /% If SOFT LIMITER #/
1{
for (i = 0; i < Ntot; i++)
{
if ((*(revd_tr + i) > T))
*(rcvd_tr + i) = T;
else if (*(rcvd_tr + i) < -T)
*(rcvd_tr + 1) = -T;
}
}

A.2.17 Reshape.c

/***¥This is the C version of the Matlab Reshape() functionk#xk
#*xyritten by Tayo Ihimoyan, 01/2000%*k*x/

#include "cmt.h"

#include "mathlib.h"

/»
Real_Matrix
reshape (Real Matrix M, unsigned mi, unsigned nl, unsigned m2, unsigned n2)

/*

reshape() returns the m2-by-n2 matrix M2 whose elements
are taken column-wise from M(mi-by-ni).
On exit, the output matrix M2[J[] is the value of this routine.
*/

/

unsigned i, j, k, 1;
Real_Matrix M2;
if (M == NULL)

1{

matherr_ ("reshape", E_NULLPTR);
return NULL;
}
/*returns an error message if m2#n2 is not equal to M elements */
if (m1 % n1 != m2 * n2)

matherr_ ("reshape", E_NULLPTR);
return NULL;

}

if ((M2 = mxalloc (NULL, m2, n2)) == NULL)
return NULL;

k =0;

1=0;

for (j = 0; j < ni; j++)
1{

for (i = 0; 1 < ml; i++)

{
if (1 >= m2)
1=0;3
K+
3
W2[11[k] = M[i1[§1;
1++;
3

}

return M2;

A.2.18 Th Inter.c

/* interferer must be initialized to zero (or contain values from another
interference type) before using this function

*/

#include <stdlib.h>

#include <math.h>

#include <stdio.h>

#include <time.h>

#include "mathlib.h"

#include "sim_parameters_extern.h"

voidth_inter (Real_Vector interferer)

1{
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int k, /% Counter */

mu, /% Mean */
sig; /* Std dev */
Complex pps, /* Power per sample in the sequence */

Iseq_conj;
double white_mean, white_varp, white_vars, c;

long ltime; /% For seeding */
Real_Vector white, /* White noise sequence */
b; /* numerator of filter */
Complex_Vector Isequence;
Real normalize, req; /* Required power level */
if ((iidtype[0] == ’g’) && (iidtypel1] == ’s7)) /* Gaussian Case */
mu = iidparms[0]; /* Easier reading this way */

sig = iidparms[1];
white = valloc (NULL, Ntot);
1ltime = time (NULL);
srand ((unsigned) ltime / 2);
for (k = 0; k < Ntot; k++) /* Create white noise sequence */
*(white + k) = sig * normal (1, 0) - mu;
white_mean = stats (white, Ntot, &white_varp, &white_vars); /* Get actual mean/var */
for (k = 0; k < Ntot; k++) /* Make white EXACTLY Gaussian */
#(white + k) = (*(white + k) - white_mean) / sqrt (white_varp);
/* Build the interference signal using the AR model as a filter */
b = valloc (NULL, 1);
c = 192.6592; /* Maximum gain in poly filter (in dB) */
b[0] = pow (10.0, (-c / 20.0)); /# Filter with no zeros */
filter (b, 1, poly, P + 1, white, Ntot, interferer);
}

/* Find the total power per sample in the sequence, and normalize the interferer */

Isequence = Cvalloc (NULL, Ntot);

for (k = 0; k < Ntot; kt+) /* Copy real interferer to complex Isequence */

{

Isequencel[k].r = *(interferer + k);
Isequence[k].i = 0.0;

}
£ft42 (Isequence, Ntot, -1); /* Compute fft of Isequence */

pps.i = 0.0; /* Initialize power per sample to zero */
pps.r = 0.0;
for (k = 0; k < Ntot; k++) /* Compute total power per sample */

{

Iseq_conj = Conjg (*(Isequence + k));
pps = Cadd (pps, Cmul (Iseq_conj, *(Isequence + k)));

pps.r = (Real) pps.r / pow (Ntot, 2);

req = pow (10, (ISR / 10)); /* Compute required power level */

normalize = sqrt ((Real) req / pps.r); /* Normalize interferer to ISR db */

useinput_ = 1; /* Perform normalization "in-place" */
interferer = vscale (interferer, Ntot, normalize);

useinput_ = 03 /* Reset to original value */

vfree (white);

viree (b);

Cvfree (Isequence);

A.2.19 Toeplitz.c

/* Toeplitz
* A Toeplitz matrix is defined by one column, coll, and one row, rowl, of lengths numrows
* and numcols, respectively. If coli[0] != rowi1[0], then coli[0] will override.
*/
#include "mathlib.h"
#include <stdlib.h>
Real Matrix
toeplitz (Real_Vector coll, Real_Vector rowl, unsigned int numrows,
unsigned int numcols)
{
register int column, row; /% counter variables */
Real_Matrix toepmat; /* Output matrix, in Toeplitz form */
toepmat = mxalloc (NULL, numrows, numcols); /# Create matrix */
for (column = 0; column < numcols; column++) /* Fill in Toeplitz form into matrix */

if (column == 0) /* Set first column */
{
for (row = 0; row < numrows; row++)
toepmat[row] [column] = *(coll + row); /* Set first column */

else
toepmat [0] [column] = #(rowl + column); /* Set first row */
for (row = 1; row < numrows; row++) /* Use shift register to do rest of rows */
toepmat[row] [column] = toepmat[row - 1][column - 11;
}

}

return toepmat;
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Appendix B

MATLAB-® Plotting Script

% C Simulation Plotting Routine

% Spetember 16, 1999

% Michael Banys

%c_string_creation;

% Load strings for use in plots

do_spectrum = 1; % Does spectral plot if do_spectrum == 1

% OPEN FILES

pbar = fopen(’pbar.txt’,’r’);

pblc = fopen(’pblc.txt’,’r’);

pblo = fopen(’pblo.txt’,’r’);

pblw = fopen(’pblu.txt’,’r’);

pbwc = fopen(’pbwc.txt’,’r’);

snr_vals = fopen(’snr_vals_.txt’,’r’);

% READ DATA

snr_list = fscanf(snr_vals,’%f’,inf);

Pb_ar_avg = fscanf(pbar,’%f’,inf);

Pb_lc_avg = fscanf(pblc,’%f’,inf);

Pb_lo_avg = fscanf(pblo,’%f’,inf);

Pb_lw_avg = fscanf(pblw,’%f’,inf);

Pb_wc_avg = fscanf (pbuc,’%f’,inf);
PBPLOT

figure;

hold on;

% May need to use plot & 1logl0(.)
title(strcat(plot_titlel,INTERFERER,plot_title2));
xlabel(’Signal-to-Thermal Noise Ratio (dB)?);
ylabel (’Probability of Bit Error (107x)?);
plot(snr_list, logl0(Pb_ar_avg), ’x-);
plot(snr_list, logl0(Pb_wc_avg), *:°);
plot(snr_list, log10(Pb_lo_avg), ’0’);
plot(snr_list, log10(Pb_lw_avg), ’

plot(snr_list, log10(Pb_lc_avg), ’-°);

legend(gca, ’ARLO’, ’Correlator on whitened’, ’LO detector’, ’LO on whitened’, ’Linear Correlator’);
set(gca, *YTick?,[-7 -6 -5 -4 -3 -2 -1 0 11);

message = sprintf(’Make note of all the important variables (ISR, Bh, P, etc.)?);

disp(message) ;

hold off;

if do_spectrum 1

WRRRRLARARAANYS SPPLOT LANARLALALL AL ALL L
interferer_out = fopen(’interferer_out.txt’,’r?’);
noise_out = fopen(’noise_out.txt’,’r?);
rcvd_tr_out = fopen(’rcvd_tr_out.txt’,’r’);
a_hat_out = fopen(’a_hat_out.txt’,’r’);
interferer = fscanf(interferer_out,’%f’,inf);
noise = fscanf(noise_out,’%f’,inf);

revd_tr = fscanf(rcvd_tr_out,’%f’,inf);

a_hat =fscanf(a_hat_out,’%f’,inf);

Ptt = spectrum(noise - interferer); % Spectrum of thermal noise

Ptt = 10¥1logl0(Ptt(:,1)); % Remove phase info and scale

delta_f = 1/(length(Ptt) - 1); % For appropriately scaling the frequency axis
£ = 0:(length(Ptt) - 1); % Obtain frequency components

£ =f * delta_f; % Scale accordingly

Pss = spectrum(noise - rcvd_tr); % Spectrum of transmitted signal

Pss = 10*1ogl0(Pss(:,1)); % Remove phase info and scale

Pii = spectrum(interferer); % Spectrum of interference signal

Pii = 10*1ogl0(Pii(:,1)); % Remove phase info and scale

Prr = spectrum(rcvd_tr); % Spectrum of received signal

Prr = 10%1ogi0(Prr(:,1)); % Remove phase info and scale

Puw = spectrum(filter(-a_hat, 1, rcvd_tr)); % Spectrum of whitened signal
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Puw = 10%1logi0(Pww(:,1)); % Remove phase info and scale
figure;

hold on;

title(strcat(plot_title3,INTERFERER,plot_title2));

xlabel (’Frequency (with respect to sampling frequency)?’);
ylabel(’Power Magnitude (dB)’);
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